
Roland Hany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453283/publications.pdf Version: 2024-02-01

POLAND HANY

#	Article	IF	CITATIONS
1	Electron Trap Dynamics in Polymer Lightâ€Emitting Diodes. Advanced Functional Materials, 2022, 32, .	14.9	9
2	On the Response Speed of Narrowband Organic Optical Upconversion Devices. Advanced Optical Materials, 2022, 10, .	7.3	7
3	Global snapshot of the effects of the COVID-19 pandemic on the research activities of materials scientists between Spring and Autumn 2020. Science and Technology of Advanced Materials, 2021, 22, 173-184.	6.1	3
4	Asymmetric azide-alkyne Huisgen cycloaddition on chiral metal surfaces. Communications Chemistry, 2021, 4, .	4.5	7
5	Shortwave infrared-absorbing squaraine dyes for all-organic optical upconversion devices. Science and Technology of Advanced Materials, 2021, 22, 194-204.	6.1	15
6	Carrier Tunneling from Charge Transfer States in Organic Photovoltaic Cells. Advanced Functional Materials, 2021, 31, 2102000.	14.9	13
7	The Dynamic Emission Zone in Sandwich Polymer Lightâ€Emitting Electrochemical Cells. Advanced Functional Materials, 2020, 30, 1906803.	14.9	22
8	Solution Processing and Self-Organization of PbS Quantum Dots Passivated with Formamidinium Lead Iodide (FAPbI ₃). ACS Omega, 2020, 5, 15746-15754.	3.5	12
9	Near-infrared absorbing cyanine dyes for all-organic optical upconversion devices. Organic Electronics, 2019, 74, 96-102.	2.6	8
10	Focus issue on organic and hybrid photovoltaics. Science and Technology of Advanced Materials, 2019, 20, 42-43.	6.1	2
11	Solution-Processed Organic Optical Upconversion Device. ACS Applied Materials & Interfaces, 2019, 11, 23428-23435.	8.0	17
12	Recent advances with optical upconverters made from all-organic and hybrid materials. Science and Technology of Advanced Materials, 2019, 20, 497-510.	6.1	22
13	Exploiting supramolecular assemblies for filterless ultra-narrowband organic photodetectors with inkjet fabrication capability. Journal of Materials Chemistry C, 2019, 7, 14639-14650.	5.5	24
14	Optimized Electrolyte Loading and Active Film Thickness for Sandwich Polymer Lightâ€Emitting Electrochemical Cells. Advanced Optical Materials, 2019, 7, 1801278.	7.3	32
15	Organic Salt Semiconductor with High Photoconductivity and Long Carrier Lifetime. Advanced Functional Materials, 2018, 28, 1705724.	14.9	17
16	Time-Dependent p–i–n Structure and Emission Zone in Sandwich-Type Light-Emitting Electrochemical Cells. ACS Photonics, 2018, 5, 1591-1598.	6.6	23
17	Squaraine Dye for a Visibly Transparent All-Organic Optical Upconversion Device with Sensitivity at 1000 nm. ACS Applied Materials & Interfaces, 2018, 10, 11063-11069.	8.0	47
18	Insights into photovoltaic properties of ternary organic solar cells from phase diagrams. Science and Technology of Advanced Materials, 2018, 19, 669-682.	6.1	13

ROLAND HANY

1

#	Article	IF	CITATIONS
19	Direct Measurement of Ion Redistribution and Resulting Modification of Chemical Equilibria in Polymer Thin Film Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2018, 10, 39100-39106.	8.0	10
20	Dynamics of Charge Distribution in Sandwich-Type Light-Emitting Electrochemical Cells Probed by the Stark Effect. ACS Photonics, 2018, 5, 3124-3131.	6.6	8
21	Ternary semitransparent organic solar cells with a laminated top electrode. Science and Technology of Advanced Materials, 2017, 18, 68-75.	6.1	19
22	Hydrogen reduction of molybdenum oxide at room temperature. Scientific Reports, 2017, 7, 40761.	3.3	147
23	Strongly Red-Shifted Photoluminescence Band Induced by Molecular Twisting in Cyanine (Cy3) Dye Films. Journal of Physical Chemistry C, 2017, 121, 9587-9593.	3.1	19
24	Visible light-emitting host-guest electrochemical cells using cyanine dyes. Organic Electronics, 2017, 48, 77-84.	2.6	27
25	Why perovskite solar cells with high efficiency show small IV-curve hysteresis. Solar Energy Materials and Solar Cells, 2017, 169, 159-166.	6.2	54
26	Unexpected Equilibrium Ionic Distribution in Cyanine/C ₆₀ Heterojunctions. Advanced Materials Interfaces, 2017, 4, 1600891.	3.7	2
27	A transparent, solvent-free laminated top electrode for perovskite solar cells. Science and Technology of Advanced Materials, 2016, 17, 260-266.	6.1	44
28	Interfacial self-assembly of nanoporous C ₆₀ thin films. RSC Advances, 2016, 6, 23141-23147.	3.6	5
29	Doping Evolution and Junction Formation in Stacked Cyanine Dye Light-Emitting Electrochemical Cells. ACS Applied Materials & Interfaces, 2016, 8, 6554-6562.	8.0	30
30	Cyanine tandem and triple-junction solar cells. Organic Electronics, 2016, 30, 191-199.	2.6	15
31	Influence of chemically p-type doped active organic semiconductor on the film thickness versus performance trend in cyanine/C ₆₀ bilayer solar cells. Science and Technology of Advanced Materials, 2015, 16, 035003.	6.1	10
32	Dissociation of Charge Transfer States and Carrier Separation in Bilayer Organic Solar Cells: A Time-Resolved Electroabsorption Spectroscopy Study. Journal of the American Chemical Society, 2015, 137, 8192-8198.	13.7	86
33	Transparent Organic Photodetector using a Near-Infrared Absorbing Cyanine Dye. Scientific Reports, 2015, 5, 9439.	3.3	109
34	Photochemical Transformations in Fullerene and Molybdenum Oxide Affect the Stability of Bilayer Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1400734.	19.5	55
35	Resonance Light Scattering in Dye-Aggregates Forming in Dewetting Droplets. ACS Nano, 2014, 8, 10057-10065.	14.6	16

Cyanine dyes in solid state organic heterojunction solar cells. , 2014, , .

3

Roland Hany

#	Article	IF	CITATIONS
37	NIR-Absorbing Heptamethine Dyes with Tailor-Made Counterions for Application in Light to Energy Conversion. Organic Letters, 2014, 16, 1044-1047.	4.6	59
38	Influence of Molybdenum Oxide Interface Solvent Sensitivity on Charge Trapping in Bilayer Cyanine Solar Cells. Journal of Physical Chemistry C, 2014, 118, 17036-17045.	3.1	19
39	Diyne-Functionalized Fullerene Self-Assembly for Thin Film Solid-State Polymerization. Macromolecules, 2014, 47, 721-728.	4.8	28
40	Cyanine dye polyelectrolytes for organic bilayer solar cells. Polymer, 2014, 55, 3195-3201.	3.8	7
41	Performance and Stability of Organic Trimethine Cyanine Dye—C60 Heterojunction Solar Cells. , 2014, , 221-229.		0
42	Spatially resolved photocurrent mapping of efficient organic solar cells fabricated on a woven mesh electrode. Progress in Photovoltaics: Research and Applications, 2013, 21, 652-657.	8.1	6
43	Semitransparent organic photovoltaics using a near-infrared absorbing cyanine dye. Solar Energy Materials and Solar Cells, 2013, 118, 157-164.	6.2	45
44	Stability of bilayer trimethine cyanine dye/fullerene organic solar cells. Solar Energy Materials and Solar Cells, 2013, 117, 585-591.	6.2	20
45	Growth and Alignment of Thin Film Organic Single Crystals from Dewetting Patterns. ACS Nano, 2013, 7, 5506-5513.	14.6	20
46	Influence of crystalline titanium oxide layer smoothness on the performance of inverted organic bilayer solar cells. Applied Physics Letters, 2013, 102, .	3.3	22
47	Dewetting-driven hierarchical self-assembly of small semiconducting molecules. Soft Matter, 2012, 8, 5804.	2.7	5
48	Oligothiophene dendron-decorated squaraine dyes: Synthesis, thin film formation, and performance in organic solar cells. Organic Electronics, 2012, 13, 1204-1212.	2.6	16
49	Synthesis, thin-film morphology, and comparative study of bulk and bilayer heterojunction organic photovoltaic devices using soluble diketopyrrolopyrrole molecules. Energy and Environmental Science, 2011, 4, 3617.	30.8	37
50	Template synthesis of cyanine dye H-aggregates on nanostructured [6,6]-phenyl C61-butyric acid methyl ester substrates. Physical Chemistry Chemical Physics, 2011, 13, 15714.	2.8	5
51	Strategies to improve cyanine dye multi layer organic solar cells. Progress in Photovoltaics: Research and Applications, 2011, 19, 851-857.	8.1	36
52	Woven Electrodes for Flexible Organic Photovoltaic Cells. Advanced Materials, 2011, 23, 1015-1019.	21.0	78
53	Flexible Mesh Electrodes: Woven Electrodes for Flexible Organic Photovoltaic Cells (Adv. Mater.) Tj ETQq1 1 0.78	34314 rgB ⁻ 21.0	T /Qverlock 1
54	Origin of the Kink in Current-Density Versus Voltage Curves and Efficiency Enhancement of Polymer-C \$_{f 60}\$ Heterojunction Solar Cells. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1690-1699.	2.9	57

ROLAND HANY

#	Article	IF	CITATIONS
55	High performing doped cyanine bilayer solar cell. Organic Electronics, 2010, 11, 583-588.	2.6	41
56	Simultaneous Biosynthesis of Two Copolymers in Pseudomonas putida GPo1 Using a Two-Stage Continuous Culture System. Biomacromolecules, 2010, 11, 1488-1493.	5.4	13
57	Fast Assembly of Cyanine Dyes into Aggregates onto [6,6]-Phenyl C ₆₁ -Butyric Acid Methyl Ester Surfaces from Organic Solvents. Langmuir, 2010, 26, 3955-3961.	3.5	12
58	Improved performance of cyanine solar cells with polyaniline anodes. Journal of Materials Chemistry, 2010, 20, 2952.	6.7	44
59	Squaraine Planar-Heterojunction Solar Cells. International Journal of Photoenergy, 2009, 2009, 1-7.	2.5	18
60	Transparent, flexible and lowâ€resistive precision fabric electrode for organic solar cells. Physica Status Solidi - Rapid Research Letters, 2009, 3, 278-280.	2.4	13
61	Photoinduced hole-transfer in semiconducting polymer/low-bandgap cyanine dye blends: evidence for unit charge separation quantum yield. Physical Chemistry Chemical Physics, 2009, 11, 8886.	2.8	23
62	Lowâ€Band Gap Polymeric Cyanine Dyes Absorbing in the NIR Region. Macromolecular Rapid Communications, 2008, 29, 651-658.	3.9	39
63	A simple HPLCâ€MS method for the quantitative determination of the composition of bacterial medium chainâ€length polyhydroxyalkanoates. Journal of Separation Science, 2008, 31, 1739-1744.	2.5	15
64	Enhanced cyanine solar cell performance upon oxygen doping. Organic Electronics, 2008, 9, 85-94.	2.6	39
65	Poly(3-hexylthiophene)/C60 heterojunction solar cells: Implication of morphology on performance and ambipolar charge collection. Solar Energy Materials and Solar Cells, 2008, 92, 464-473.	6.2	51
66	Nanoscale Structuring of Semiconducting Molecular Blend Films in the Presence of Mobile Counterions. Langmuir, 2008, 24, 7316-7322.	3.5	30
67	Ionic Space Charge Driven Organic Photovoltaic Devices. Chimia, 2007, 61, 787-791.	0.6	27
68	Aryltriazene Photopolymers for UV-Laser Applications: Improved Synthesis and Photodecomposition Study. Macromolecular Chemistry and Physics, 2007, 208, 277-286.	2.2	68
69	Quantitative analysis of bacterial medium-chain-length poly([R]-3-hydroxyalkanoates) by gas chromatography. Journal of Chromatography A, 2007, 1143, 199-206.	3.7	54
70	Interface morphology snapshots of vertically segregated thin films of semiconducting polymer/polystyrene blends. Polymer, 2007, 48, 2380-2386.	3.8	22
71	Nanostructured Organic Layers via Polymer Demixing for Interface-Enhanced Photovoltaic Cells. Chemistry of Materials, 2006, 18, 5504-5509.	6.7	53
72	On the use of cyanine dyes as low-bandgap materials in bulk heterojunction photovoltaic devices. Synthetic Metals, 2006, 156, 973-978.	3.9	37

ROLAND HANY

#	Article	IF	CITATIONS
73	Tailor-made olefinic medium-chain-length poly[(R)-3-hydroxyalkanoates] byPseudomonas putida GPo1: Batch versus chemostat production. Biotechnology and Bioengineering, 2006, 93, 737-746.	3.3	82
74	Chemical synthesis and characterization of POSS-functionalized poly[3-hydroxyalkanoates]. Polymer, 2005, 46, 5025-5031.	3.8	38
75	One-step flame synthesis ofSnO2/TiO2composite nanoparticles for photocatalytic applications. International Journal of Photoenergy, 2005, 7, 153-161.	2.5	66
76	Encapsulated Zosteric Acid Embedded in Poly[3-hydroxyalkanoate] Coatings?Protection against Biofouling. Polymer Bulletin, 2004, 52, 65.	3.3	19
77	Toward Non-Toxic Antifouling:Â Synthesis of Hydroxy-, Cinnamic Acid-, Sulfate-, and Zosteric Acid-Labeled Poly[3-hydroxyalkanoates]. Biomacromolecules, 2004, 5, 1452-1456.	5.4	35
78	Chemical Synthesis of Crystalline Comb Polymers from Olefinic Medium-Chain-Length Poly[3-hydroxyalkanoates]. Macromolecules, 2004, 37, 385-389.	4.8	36
79	Tailored Biosynthesis of Olefinic Medium-Chain-Length Poly[(R)-3-hydroxyalkanoates] inPseudomonasputidaGPo1 with Improved Thermal Properties. Macromolecules, 2004, 37, 6780-6785.	4.8	68
80	Improved reproducibility of chemical reactions on purified polystyrene resins monitored by 31P MAS NMR. Tetrahedron Letters, 2003, 44, 6987-6990.	1.4	4
81	Quantitative Determination of Loadings and Oxidation Products of Polystyrene-Bound Phosphines Using 31P MAS NMR. ACS Combinatorial Science, 2003, 5, 610-616.	3.3	7
82	Synthesis and Characterization of Novel Copoly(esterâ^'urethane) Containing Blocks of Poly-[(R)-3-hydroxyoctanoate] and Poly-[(R)-3-hydroxybutyrate]. Macromolecules, 2002, 35, 4946-4950.	4.8	36
83	Preparation and Characterization of Enantiomerically Pure Telechelic Diols from mclâ^'Poly[(R)-3-hydroxyalkanoates]. Macromolecules, 2002, 35, 684-689.	4.8	33
84	Quantitative Determination of Resin Loading in Solid-Phase Organic Synthesis Using13C MAS NMR. ACS Combinatorial Science, 2001, 3, 85-89.	3.3	31
85	Biotransformation of Various Substituted Aromatic Compounds to Chiral Dihydrodihydroxy Derivatives. Applied and Environmental Microbiology, 2001, 67, 3333-3339.	3.1	33
86	Characterization of New Bacterial Copolyesters Containing 3-Hydroxyoxoalkanoates and Acetoxy-3-hydroxyalkanoates. Macromolecules, 2000, 33, 8571-8575.	4.8	13
87	Simultaneous Quantification of Acetanilide Herbicides and Their Oxanilic and Sulfonic Acid Metabolites in Natural Waters. Analytical Chemistry, 2000, 72, 840-845.	6.5	21
88	Comment on Influence of the Chemical Environment on Metolachlor Conformations. Journal of Agricultural and Food Chemistry, 2000, 48, 4448-4449.	5.2	4
89	Determination of polyhydroxyalkanoates in activated sludge by ion chromatographic and enzymatic methods. Journal of Microbiological Methods, 1999, 35, 111-119.	1.6	41
90	Sulfonic and Oxanilic Acid Metabolites of Acetanilide Herbicides:Â Separation of Diastereomers and Enantiomers by Capillary Zone Electrophoresis and Identification by1H NMR Spectroscopy. Environmental Science & Technology, 1999, 33, 3462-3468.	10.0	39

#	Article	IF	CITATIONS
91	Absolute chemically induced nuclear polarizations from the photodissociation of phenylsubstituted ketones. Radical pair precursor states and memory effects. Chemical Physics, 1993, 172, 131-146.	1.9	24
92	Separation and analysis of CIDNP spin orders for a coupled multiproton system. Chemical Physics, 1988, 120, 169-175.	1.9	16