Tzumin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453223/publications.pdf

Version: 2024-02-01

147566 197535 7,930 49 31 49 citations h-index g-index papers 67 67 67 6235 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis. Neuron, 1999, 22, 451-461.	3.8	2,368
2	Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in <i>Drosophila</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2967-76.	3.3	947
3	Mosaic analysis with a repressible cell marker (MARCM) for Drosophila neural development. Trends in Neurosciences, 2001, 24, 251-254.	4.2	845
4	Genetic mosaic with dual binary transcriptional systems in Drosophila. Nature Neuroscience, 2006, 9, 703-709.	7.1	478
5	Organization and Postembryonic Development of Glial Cells in the Adult Central Brain of <i>Drosophila </i> . Journal of Neuroscience, 2008, 28, 13742-13753.	1.7	280
6	Sparse, decorrelated odor coding in the mushroom body enhances learned odor discrimination. Nature Neuroscience, 2014, 17, 559-568.	7.1	268
7	Cell-Autonomous Requirement of the USP/EcR-B Ecdysone Receptor for Mushroom Body Neuronal Remodeling in Drosophila. Neuron, 2000, 28, 807-818.	3.8	255
8	TGF- \hat{l}^2 Signaling Activates Steroid Hormone Receptor Expression during Neuronal Remodeling in the Drosophila Brain. Cell, 2003, 112, 303-315.	13.5	215
9	Gradients of the Drosophila Chinmo BTB-Zinc Finger Protein Govern Neuronal Temporal Identity. Cell, 2006, 127, 409-422.	13.5	213
10	Clonal analysis of <i>Drosophila </i> antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast lineage. Development (Cambridge), 2008, 135, 2883-2893.	1.2	182
11	Clonal Development and Organization of the Adult Drosophila Central Brain. Current Biology, 2013, 23, 633-643.	1.8	161
12	Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nature Neuroscience, 2009, 12, 947-953.	7.1	149
13	A Complete Developmental Sequence of a Drosophila Neuronal Lineage as Revealed by Twin-Spot MARCM. PLoS Biology, 2010, 8, e1000461.	2.6	140
14	Opposing intrinsic temporal gradients guide neural stem cell production of varied neuronal fates. Science, 2015, 350, 317-320.	6.0	130
15	Stem Cell-Intrinsic, Seven-up-Triggered Temporal Factor Gradients Diversify Intermediate Neural Progenitors. Current Biology, 2017, 27, 1303-1313.	1.8	81
16	Neurotransmitter identity is acquired in a lineage-restricted manner in the Drosophila CNS. ELife, 2019, 8, .	2.8	78
17	Lineage Analysis of Drosophila Lateral Antennal Lobe Neurons Reveals Notch-Dependent Binary Temporal Fate Decisions. PLoS Biology, 2012, 10, e1001425.	2.6	67
18	Diverse neuronal lineages make stereotyped contributions to the <i>Drosophila</i> locomotor control center, the central complex. Journal of Comparative Neurology, 2013, 521, 2645-2662.	0.9	67

#	Article	IF	CITATIONS
19	Cell Class-Lineage Analysis Reveals Sexually Dimorphic Lineage Compositions in the Drosophila Brain. Current Biology, 2016, 26, 2583-2593.	1.8	67
20	Lineage-specific effects of Notch/Numb signaling in post-embryonic development of the <i>Drosophila</i> brain. Development (Cambridge), 2010, 137, 43-51.	1.2	62
21	Imp and Syp RNA-binding proteins govern decommissioning of <i>Drosophila</i> neural stem cells. Development (Cambridge), 2017, 144, 3454-3464.	1.2	62
22	Making Drosophila lineage–restricted drivers via patterned recombination in neuroblasts. Nature Neuroscience, 2014, 17, 631-637.	7.1	57
23	Dissection of the <i>Drosophila</i> neuropeptide F circuit using a high-throughput two-choice assay. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8091-E8099.	3.3	55
24	<i>Drosophila</i> intermediate neural progenitors produce lineage-dependent related series of diverse neurons. Development (Cambridge), 2014, 141, 253-258.	1.2	52
25	Transcriptomes of lineage-specific <i>Drosophila</i> neuroblasts profiled via genetic targeting and robotic sorting. Development (Cambridge), 2015, 143, 411-21.	1.2	49
26	Temporal control of Drosophila central nervous system development. Current Opinion in Neurobiology, 2019, 56, 24-32.	2.0	47
27	Generating neuronal diversity in the <i>Drosophila</i> central nervous system. Developmental Dynamics, 2012, 241, 57-68.	0.8	45
28	Hierarchical Deployment of Factors Regulating Temporal Fate in a Diverse Neuronal Lineage of the Drosophila Central Brain. Neuron, 2012, 73, 677-684.	3.8	44
29	The bHLH Repressor Deadpan Regulates the Self-renewal and Specification of Drosophila Larval Neural Stem Cells Independently of Notch. PLoS ONE, 2012, 7, e46724.	1.1	44
30	Nuclear Receptor Unfulfilled Regulates Axonal Guidance and Cell Identity of Drosophila Mushroom Body Neurons. PLoS ONE, 2009, 4, e8392.	1.1	43
31	Extremes of Lineage Plasticity in the Drosophila Brain. Current Biology, 2013, 23, 1908-1913.	1.8	43
32	Birth time/order-dependent neuron type specification. Current Opinion in Neurobiology, 2010, 20, 14-21.	2.0	32
33	Unlimited Genetic Switches for Cell-Type-Specific Manipulation. Neuron, 2019, 104, 227-238.e7.	3.8	29
34	Conservation and divergence of related neuronal lineages in the Drosophila central brain. ELife, 2020, 9, .	2.8	29
35	An Enhanced Gene Targeting Toolkit for <i>Drosophila </i> : Golic+. Genetics, 2015, 199, 683-694.	1.2	28
36	Mamo decodes hierarchical temporal gradients into terminal neuronal fate. ELife, 2019, 8, .	2.8	23

#	Article	IF	Citations
37	Wiring the Drosophila Brain with Individually Tailored Neural Lineages. Current Biology, 2017, 27, R77-R82.	1.8	21
38	Lineage-guided Notch-dependent gliogenesis by <i>Drosophila</i> multi-potent progenitors. Development (Cambridge), 2018, 145, .	1.2	21
39	High-throughput dense reconstruction of cell lineages. Open Biology, 2019, 9, 190229.	1.5	21
40	Generating mosaics for lineage analysis in flies. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 69-81.	5.9	20
41	A programmable sequence of reporters for lineage analysis. Nature Neuroscience, 2020, 23, 1618-1628.	7.1	18
42	Neuronal upregulation of Prospero protein is driven by alternative mRNA polyadenylation and Syncrip-mediated mRNA stabilisation. Biology Open, 2020, 9, .	0.6	14
43	New genetic tools for cell lineage analysis in Drosophila. Nature Methods, 2009, 6, 566-568.	9.0	11
44	The art of lineage tracing: From worm to human. Progress in Neurobiology, 2021, 199, 101966.	2.8	9
45	Enhanced Golic+: Highly effective CRISPR gene targeting and transgene HACKing in <i>Drosophila</i> Development (Cambridge), 2020, 147, .	1.2	6
46	YAP1 nuclear efflux and transcriptional reprograming follow membrane diminution upon VSV-G-induced cell fusion. Nature Communications, 2021, 12, 4502.	5.8	5
47	Hormone-controlled changes in the differentiation state of post-mitotic neurons. Current Biology, 2022, , .	1.8	4
48	Diverse neuronal lineages make stereotyped contributions to the Drosophila locomotor control center, the central complex. Journal of Comparative Neurology, 2013, 521, Spc1-Spc1.	0.9	3
49	CAMIO: a transgenic CRISPR pipeline to create diverse targeted genome deletions in Drosophila. Nucleic Acids Research, 2020, 48, 4344-4356.	6.5	3