Ilaria Rea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7453215/publications.pdf

Version: 2024-02-01

179	3,645	36	51
papers	citations	h-index	g-index
184	184	184	3513
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. Optics Express, 2006, 14, 6264.	1.7	125
2	Lensless light focusing with the centric marine diatom Coscinodiscus walesii. Optics Express, 2007, 15, 18082.	1.7	113
3	DNA Optical Detection Based on Porous Silicon Technology: from Biosensors to Biochips. Sensors, 2007, 7, 214-221.	2.1	109
4	Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 3393-3403.	1.1	88
5	Optical Properties of Diatom Nanostructured Biosilica in Arachnoidiscus sp: Micro-Optics from Mother Nature. PLoS ONE, 2014, 9, e103750.	1.1	82
6	Surface bioengineering of diatomite based nanovectors for efficient intracellular uptake and drug delivery. Nanoscale, 2015, 7, 20063-20074.	2.8	81
7	Nano-biosilica from marine diatoms: A brand new material for photonic applications. Superlattices and Microstructures, 2009, 46, 84-89.	1.4	80
8	A Mechanochemical Approach to Porous Silicon Nanoparticles Fabrication. Materials, 2011, 4, 1023-1033.	1.3	80
9	Diatomite silica nanoparticles for drug delivery. Nanoscale Research Letters, 2014, 9, 329.	3.1	80
10	Multi-wavelength study of light transmitted through a single marine centric diatom. Optics Express, 2010, 18, 12203.	1.7	76
11	Colorimetric Immunosensor by Aggregation of Photochemically Functionalized Gold Nanoparticles. ACS Omega, 2018, 3, 3805-3812.	1.6	67
12	Electronic properties of TiO ₂ -based materials characterized by high Ti ³⁺ self-doping and low recombination rate of electron–hole pairs. RSC Advances, 2017, 7, 2373-2381.	1.7	66
13	Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics, 2018, 10, 242.	2.0	66
14	Periodic versus aperiodic: Enhancing the sensitivity of porous silicon based optical sensors. Applied Physics Letters, 2007, 90, 191112.	1.5	62
15	Aminosilane functionalizations of mesoporous oxidized silicon for oligonucleotide synthesis and detection. Journal of the Royal Society Interface, 2013, 10, 20130160.	1.5	60
16	A very sensitive porous silicon based humidity sensor. Sensors and Actuators B: Chemical, 2005, 111-112, 135-139.	4.0	57
17	Porous silicon-based optical biosensors and biochips. Physica E: Low-Dimensional Systems and Nanostructures, 2007, 38, 188-192.	1.3	55
18	Porous Silicon Optical Devices: Recent Advances in Biosensing Applications. Sensors, 2021, 21, 1336.	2.1	55

#	Article	IF	CITATIONS
19	Optical characterization of aminosilane-modified silicon dioxide surface for biosensing. Journal of the European Optical Society-Rapid Publications, 0, 8, .	0.9	54
20	A porous silicon-based Bragg grating waveguide sensor for chemical monitoring. Sensors and Actuators B: Chemical, 2009, 139, 39-43.	4.0	53
21	Morphological, Structural, and Charge Transfer Properties of F-Doped ZnO: A Spectroscopic Investigation. Journal of Physical Chemistry C, 2017, 121, 16012-16020.	1.5	51
22	Porous silicon-based optical biochips. Journal of Optics, 2006, 8, S540-S544.	1.5	49
23	Porous Silicon Based Resonant Mirrors for Biochemical Sensing. Sensors, 2008, 8, 6549-6556.	2.1	49
24	Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. Journal of Applied Physics, 2010, 107, .	1.1	49
25	Synthetic vs Natural: Diatoms Bioderived Porous Materials for the Next Generation of Healthcare Nanodevices. Advanced Healthcare Materials, 2017, 6, 1601125.	3.9	47
26	Improvement of stability and recovery time in porous-silicon-based NO2 sensor. Sensors and Actuators B: Chemical, 2004, 102, 195-197.	4.0	45
27	Hybrid polymer-porous silicon photonic crystals for optical sensing. Journal of Applied Physics, 2009, 106, .	1.1	44
28	Microneedles-based electrochemical sensors: New tools for advanced biosensing. Current Opinion in Electrochemistry, 2019, 17, 121-127.	2.5	44
29	Self-Assembled Biofilm of Hydrophobins Protects the Silicon Surface in the KOH Wet Etch Process. Langmuir, 2007, 23, 7920-7922.	1.6	43
30	Internalization kinetics and cytoplasmic localization of functionalized diatomite nanoparticles in cancer cells by Raman imaging. Journal of Biophotonics, 2018, 11, e201700207.	1.1	41
31	Proteinâ€Modified Porous Silicon Nanostructures. Advanced Materials, 2008, 20, 1529-1533.	11.1	40
32	A microfluidics assisted porous silicon array for optical label-free biochemical sensing. Biomicrofluidics, 2011, 5, 34120-3412010.	1.2	40
33	The Pleurotus ostreatus hydrophobin Vmh2 and its interaction with glucans. Glycobiology, 2010, 20, 594-602.	1.3	39
34	Solid phase synthesis of a thrombin binding aptamer on macroporous silica for label free optical quantification of thrombin. RSC Advances, 2016, 6, 86762-86769.	1.7	39
35	Nanostructured Biosilica of Diatoms: From Water World to Biomedical Applications. Applied Sciences (Switzerland), 2020, 10, 6811.	1.3	39
36	Chemical modification of TiO2 nanotube arrays for label-free optical biosensing applications. Applied Surface Science, 2017, 419, 235-240.	3.1	38

#	Article	IF	CITATIONS
37	UV-shielding and wavelength conversion by centric diatom nanopatterned frustules. Scientific Reports, 2018, 8, 16285.	1.6	37
38	F-doped ZnO nano- and meso-crystals with enhanced photocatalytic activity in diclofenac degradation. Science of the Total Environment, 2021, 762, 143066.	3.9	37
39	A Microsystem Based on Porous Silicon-Glass Anodic Bonding for Gas and Liquid Optical Sensing. Sensors, 2006, 6, 680-687.	2.1	35
40	Nanoparticle-based strategy for personalized B-cell lymphoma therapy. International Journal of Nanomedicine, 2016, Volume 11, 6089-6101.	3.3	35
41	One-Shot Fabrication of Polymeric Hollow Microneedles by Standard Photolithography. Polymers, 2021, 13, 520.	2.0	34
42	Extending the Shelf-Life of Meat and Dairy Products via PET-Modified Packaging Activated With the Antimicrobial Peptide MTP1. Frontiers in Microbiology, 2019, 10, 2963.	1.5	33
43	Environmental Conditions Modulate the Switch among Different States of the Hydrophobin Vmh2 from Pleurotus ostreatus. Biomacromolecules, 2012, 13, 743-750.	2.6	32
44	Bioengineered Silicon Diatoms: Adding Photonic Features to a Nanostructured Semiconductive Material for Biomolecular Sensing. Nanoscale Research Letters, 2016, 11, 405.	3.1	32
45	Functionalized Polymeric Materials with Bio-Derived Antimicrobial Peptides for "Active―Packaging. International Journal of Molecular Sciences, 2019, 20, 601.	1.8	32
46	SERS Quantification of Galunisertib Delivery in Colorectal Cancer Cells by Plasmonicâ€Assisted Diatomite Nanoparticles. Small, 2021, 17, e2101711.	5.2	32
47	Electroless Gold-Modified Diatoms as Surface-Enhanced Raman Scattering Supports. Nanoscale Research Letters, 2016, 11, 315.	3.1	31
48	Optically monitored drug delivery patch based on porous silicon and polymer microneedles. Biomedical Optics Express, 2016, 7, 1645.	1.5	31
49	Small Synthetic Peptides Bioconjugated to Hybrid Gold Nanoparticles Destroy Potentially Deadly Bacteria at Submicromolar Concentrations. Bioconjugate Chemistry, 2018, 29, 3877-3885.	1.8	31
50	Unraveling the Charge State of Oxygen Vacancies in ZrO _{2â€"<i>x</i>} on the Basis of Synergistic Computational and Experimental Evidence. Journal of Physical Chemistry C, 2019, 123, 11581-11590.	1.5	31
51	Recent Advances in the Fabrication and Functionalization of Flexible Optical Biosensors: Toward Smart Life-Sciences Applications. Biosensors, 2021, 11, 107.	2.3	31
52	Versatile synthesis of ZnO nanowires for quantitative optical sensing of molecular biorecognition. Sensors and Actuators B: Chemical, 2015, 220, 705-711.	4.0	29
53	Gold decorated porous biosilica nanodevices for advanced medicine. Nanotechnology, 2018, 29, 235601.	1.3	29
54	Bioactive modification of silicon surface using self-assembled hydrophobins from Pleurotus ostreatus. European Physical Journal E, 2009, 30, 181-5.	0.7	28

#	Article	IF	Citations
55	A PEGDA hydrogel nanocomposite to improve gold nanoparticles stability for novel plasmonic sensing platforms. Journal of Applied Physics, 2021, 129, .	1.1	27
56	Langmuirâ^'Blodgett Film of Hydrophobin Protein from Pleurotus ostreatus at the Airâ^'Water Interface. Langmuir, 2008, 24, 12953-12957.	1.6	26
57	Porous Silicon-Based Aptasensors: The Next Generation of Label-Free Devices for Health Monitoring. Molecules, 2019, 24, 2216.	1.7	25
58	Photocatalytic hydrogen evolution by co-catalyst-free TiO ₂ /C bulk heterostructures synthesized under mild conditions. RSC Advances, 2020, 10, 12519-12534.	1.7	25
59	Photoluminescence of Graphene Oxide Infiltrated into Mesoporous Silicon. Journal of Physical Chemistry C, 2014, 118, 27301-27307.	1.5	24
60	Selfâ€Assembly of Gâ€Rich Oligonucleotides Incorporating a 3′–3′ Inversion of Polarity Site: A New Route Towards Gâ€Wire DNA Nanostructures. ChemistryOpen, 2017, 6, 599-605.	0.9	24
61	A natural source of porous biosilica for nanotech applications: the diatoms microalgae. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 1820-1825.	0.8	23
62	Hydrophobin-coated plates as matrix-assisted laser desorption/ionization sample support for peptide/protein analysis. Analytical Biochemistry, 2014, 449, 9-16.	1.1	23
63	The amphiphilic hydrophobin Vmh2 plays a key role in one step synthesis of hybrid protein–gold nanoparticles. Colloids and Surfaces B: Biointerfaces, 2015, 136, 214-221.	2.5	23
64	Plasmonic Nanosensors: Design, Fabrication, and Applications in Biomedicine. Chemosensors, 2022, 10, 150.	1.8	23
65	Polymeric Microneedle Arrays: Versatile Tools for an Innovative Approach to Drug Administration. Advanced Therapeutics, 2019, 2, 1900036.	1.6	22
66	Resonant cavity enhanced optical microsensor for molecular interactions based on porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 886-891.	0.8	18
67	Recent Advances on Diatom-Based Biosensors. Sensors, 2019, 19, 5208.	2.1	18
68	Ellipsometric Study of Liquid Crystal Infiltrated Porous Silicon. Molecular Crystals and Liquid Crystals, 2007, 465, 359-370.	0.4	17
69	An integrated pressure-driven microsystem based on porous silicon for optical monitoring of gaseous and liquid substances. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1459-1463.	0.8	17
70	Quantification and Reduction of the Residual Chemical Reactivity of Passivated Biodegradable Porous Silicon for Drug Delivery Applications. Silicon, 2018, 10, 349-359.	1.8	17
71	Nanostructured silicon-based biosensors for the selective identification of analytes of social interest. Journal of Physics Condensed Matter, 2006, 18, S2019-S2028.	0.7	16
72	Hydrophobin Vmh2–glucose complexes self-assemble in nanometric biofilms. Journal of the Royal Society Interface, 2012, 9, 2450-2456.	1.5	16

#	Article	IF	Citations
73	Microfluidics assisted biosensors for label-free optical monitoring of molecular interactions. Sensors and Actuators B: Chemical, 2013, 179, 157-162.	4.0	16
74	ATR FT-IR spectroscopy on Vmh2 hydrophobin self-assembled layers for Teflon membrane bio-functionalization. Applied Surface Science, 2015, 351, 673-680.	3.1	16
75	Photoluminescence enhancement of graphene oxide emission by infiltration in an aperiodic porous silicon multilayer. Optics Express, 2016, 24, 24413.	1.7	16
76	Reversible sensing of heavy metal ions using lysine modified oligopeptides on porous silicon and gold. Sensors and Actuators B: Chemical, 2017, 244, 142-150.	4.0	16
77	Design of Gelatin-Capped Plasmonic-Diatomite Nanoparticles with Enhanced Galunisertib Loading Capacity for Drug Delivery Applications. International Journal of Molecular Sciences, 2021, 22, 10755.	1.8	16
78	In Vivo Toxicity Assessment of Hybrid Diatomite Nanovectors Using <i>Hydra vulgaris</i> as a Model System. Advanced Biology, 2019, 3, e1800247.	3.0	15
79	Direct Synthesis of Oligonucleotides on Nanostructured Silica Multilayers. Journal of Physical Chemistry C, 2010, 114, 2617-2621.	1.5	14
80	SERS Sensing of Bacterial Endotoxin on Gold Nanoparticles. Frontiers in Immunology, 2021, 12, 758410.	2.2	14
81	A new strategy for label-free detection of lymphoma cancer cells. Biomedical Optics Express, 2015, 6, 1353.	1.5	13
82	Enzymes and proteins from extremophiles as hyperstable probes in nanotechnology: the use of D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis for sugars monitoring. Extremophiles, 2008, 12, 69-73.	0.9	12
83	A parametric study of laser induced ablation–oxidation on porous silicon surfaces. Journal of Physics Condensed Matter, 2008, 20, 265009.	0.7	12
84	Hybrid bio/non-bio interfaces for protein-glucose interaction monitoring. Journal of Applied Physics, 2013, 114, 134904.	1.1	12
85	Nanostructure reactivity: Confinement energy and charge transfer in porous silicon. Sensors and Actuators B: Chemical, 2005, 111-112, 117-124.	4.0	11
86	Optics with diatoms: towards efficient, bioinspired photonic devices at the micro-scale., 2013,,.		10
87	Vmh2 hydrophobin layer entraps glucose: A quantitative characterization by label-free optical and gravimetric methods. Applied Surface Science, 2016, 364, 201-207.	3.1	10
88	PNA-Based Graphene Oxide/Porous Silicon Hybrid Biosensor: Towards a Label-Free Optical Assay for Brugada Syndrome. Nanomaterials, 2020, 10, 2233.	1.9	10
89	Timeâ€gated luminescence imaging of positively charged poly―l―lysineâ€coated highly microporous silicon nanoparticles in living Hydra polyp. Journal of Biophotonics, 2020, 13, e202000272.	1.1	10
90	Synthesis of mixed-sequence oligonucleotides on mesoporous silicon: chemical strategies and material stability. Nanoscale Research Letters, 2014, 9, 317.	3.1	9

#	Article	IF	CITATIONS
91	Bioconjugation of a PNA Probe to Zinc Oxide Nanowires for Label-Free Sensing. Nanomaterials, 2021, 11, 523.	1.9	9
92	A nanostructured hybrid material based on polymer infiltrated porous silicon layer. Applied Physics A: Materials Science and Processing, 2010, 98, 525-530.	1.1	8
93	Nanogravimetric and Optical Characterizations of Thrombin Interaction with a Self-Assembled Thiolated Aptamer. Journal of Sensors, 2016, 2016, 1-8.	0.6	8
94	Toward Multi-Parametric Porous Silicon Transducers Based on Covalent Grafting of Graphene Oxide for Biosensing Applications. Frontiers in Chemistry, 2018, 6, 583.	1.8	8
95	π–π stacked DNA G-wire nanostructures formed by a short G-rich oligonucleotide containing a 3′–3′ inversion of polarity site. Organic Chemistry Frontiers, 2020, 7, 2187-2195.	2.3	8
96	H ³ (Hydrogelâ€Based, Highâ€Sensitivity, Hybrid) Plasmonic Transducers for Biomolecular Interactions Monitoring. Advanced Materials Technologies, 2022, 7, .	3.0	8
97	Optical microsystems based on a nanomaterial technology. Journal of Physics Condensed Matter, 2007, 19, 395008.	0.7	7
98	Playing with light in diatoms: small water organisms with a natural photonic crystal structure., 2007, 6593, 305.		7
99	Biological passivation of porous silicon by a self-assembled nanometric biofilm of proteins. Journal of Nanophotonics, 2009, 3, 031985.	0.4	7
100	Numerical Optimization of a Microfluidic Assisted Microarray for the Detection of Biochemical Interactions. Sensors, 2011, 11, 9658-9666.	2.1	7
101	Diatom Valve Three-Dimensional Representation: A New Imaging Method Based on Combined Microscopies. International Journal of Molecular Sciences, 2016, 17, 1645.	1.8	7
102	Design and Synthesis of Hybrid PEGylated Metal Monopicolinate Cyclam Ligands for Biomedical Applications. ACS Omega, 2019, 4, 2500-2509.	1.6	7
103	A porous silicon Bragg grating waveguide by direct laser writing. Journal of Physics Condensed Matter, 2008, 20, 365203.	0.7	6
104	Photoemissive properties and stability of undecylenic acid-modified porous silicon nanoparticles in physiological medium. Applied Physics Letters, 2019, 114, .	1.5	6
105	Underwater Light Manipulation by the Benthic Diatom Ctenophora pulchella: From PAR Efficient Collection to UVR Screening. Nanomaterials, 2021, 11, 2855.	1.9	6
106	Quantitative measurements of hydro-alcoholic binary mixtures by porous silicon optical microsensors. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1941-1945.	0.8	5
107	Hybrid organic–inorganic porous semiconductor transducer for multi-parameters sensing. Journal of the Royal Society Interface, 2015, 12, 20141268.	1.5	5
108	Chemical and Structural Characterization of Several Mid-Term Explanted Breast Prostheses. Materials, 2016, 9, 678.	1.3	5

#	Article	IF	CITATIONS
109	Covalent grafting of graphene oxide on functionalized macroporous silicon. Open Material Sciences, 2018, 4, 15-22.	0.8	5
110	Synthesis and Surface Modification of Nanostructured F-Doped ZnO: Toward a Transducer for Label-Free Optical Biosensing. Applied Sciences (Switzerland), 2019, 9, 3380.	1.3	5
111	An integrated hybrid optical device for sensing applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1946-1950.	0.8	4
112	Laser direct-writing of Bragg gratings waveguides on porous silicon. , 2008, , .		4
113	Label-free biosensing by means of optical micro-ring resonator. Proceedings of SPIE, 2009, , .	0.8	4
114	Peptide Functionalization of Silicon for Detection and Classification of Prostatic Cells. Journal of Sensors, 2017, 2017, 1-9.	0.6	4
115	Hybrid Organic/Inorganic Nanomaterials for Biochemical Sensing. Lecture Notes in Electrical Engineering, 2021, , 93-99.	0.3	4
116	Theranostic Microneedle Devices: Innovative Biosensing and Transdermal Drugs Administration. , 0, , .		4
117	Optical properties of porous silicon Thue-Morse structures. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 1966-1970.	0.8	3
118	Optical sensing of chemicals by a porous silicon Bragg grating waveguide. Proceedings of SPIE, 2008, ,	0.8	3
119	Protein conformational changes revealed by optical spectroscopic reflectometry in porous silicon multilayers. Journal of Physics Condensed Matter, 2009, 21, 035115.	0.7	3
120	Silicon-Based Technology for Ligand-Receptor Molecular Identification. Journal of Atomic, Molecular, and Optical Physics, 2012, 2012, 1-5.	0.5	3
121	Diagnostic and therapeutic devices based on polymeric microneedles: fabrication and preliminary results., 2015,,.		3
122	Silicon infrared diffuser for wireless communication. Applied Optics, 2006, 45, 6746.	2.1	2
123	Dewatering bore pumps – reducing costs and emissions by maximising pumping efficiency over time. Mining Technology: Transactions of the Institute of Materials, Minerals and Mining Section A, 2009, 118, 220-224.	0.8	2
124	Organic-inorganic Interfaces for a New Generation of Hybrid Biosensors. , 0, , .		2
125	Silicon based optical biochips for biomedical applications. , 2014, , .		2
126	Bioconjugation of Heavy Metal-binding Proteins on Surface: An Optical and Gravimetric Characterization. Procedia Engineering, 2014, 87, 292-295.	1.2	2

#	Article	IF	Citations
127	A silicon-based peptide biosensor for label-free detection of cancer cells. , 2015, , .		2
128	CHAPTER 9. Diatoms: A Natural Source of Nanostructured Silica for Drug Delivery. RSC Nanoscience and Nanotechnology, 0, , 201-218.	0.2	2
129	Optical characterisation of biological nano-porous silica structures. , 2005, , .		1
130	Design and realization of highly stable porous silicon optical biosensor based on proteins from extremophiles. , 2007, , .		1
131	Oligonucleotides direct synthesis on porous silicon chip. Nucleic Acids Symposium Series, 2008, 52, 721-722.	0.3	1
132	Intrinsic photoluminescence of diatom shells in sensing applications., 2009,,.		1
133	Modelling biochemical interactions in a microfluidic assisted porous silicon microarray for optical sensing. , 2011, , .		1
134	Porous silicon and diatoms micro-shells: an example of inverse biomimetic., 2011,,.		1
135	Evaluation of thin metal film thickness from light attenuation and multi-reflection effects on micro-Raman response. Thin Solid Films, 2013, 536, 142-146.	0.8	1
136	Natural and synthetic nanostructured materials for biomedical applications. , 2015, , .		1
137	Diatomite nanoparticles as potential drug delivery systems. , 2015, , .		1
138	Optical modelling of hybrid nanoparticles for theranostic applications. , 2017, , .		1
139	Bioconjugation of Peptides to Hybrid Gold Nanoparticles. Methods in Molecular Biology, 2021, 2355, 105-115.	0.4	1
140	Porous Silicon for Microdevices and Microsystems. , 2014, , 797-804.		1
141	Hybrid Hydrophobin/Gold Nanoparticles: Synthesis and Characterization of New Synthetic Probes for Biological Applications. Lecture Notes in Electrical Engineering, 2018, , 169-176.	0.3	1
142	Porous Silicon-Based Optical Chemical Sensors. , 2015, , 69-94.		1
143	Protein-modified porous silicon optical devices for biosensing. , 2021, , 113-148.		1
144	CHAPTER 5. Micro- and Nano-optical Devices from Diatom Nanostructures: Light Control by Mother Nature. RSC Nanoscience and Nanotechnology, 0, , 111-125.	0.2	1

#	Article	IF	Citations
145	Diatomite-based nanoparticles: Fabrication strategies for medical applications. , 2022, , 427-446.		1
146	Aperiodic photonic bandgap devices based on nanostructured porous silicon., 2007,,.		0
147	An optical microsystem based on vertical silicon-air Bragg mirror for liquid substances monitoring. , 2007, , .		0
148	Thue-Morse quasi-crystals made of porous silicon. , 2007, , FMI4.		0
149	Light micro-lensing effect in biosilica shells of diatoms microalgae. , 2008, , .		0
150	Integrated optical biosensors and biochips based on porous silicon technology., 2008,,.		0
151	Optical detection of PNA/DNA hybridization in resonant porous silicon-based devices. , 2008, , .		0
152	Nematic Liquid Crystal Confined in Electrochemically Etched Porous Silicon: Optical Characterization and Applications in Photonics. , 2009, , .		0
153	Micro and nanophotonics in silicon: new perspectives and applications. , 2009, , .		0
154	New perspectives and applications of silicon nanophotonics. Proceedings of SPIE, 2010, , .	0.8	0
155	Light confinement in marine centric diatoms: main characteristics and wavelength dependence. , 2010, , .		0
156	A porous silicon based microarray for label-free optical detection of DNA hybridization. Proceedings of SPIE, $2010, , .$	0.8	0
157	A porous silicon based microfluidic array for the optical monitoring of biomolecular interactions. , 2011, , .		0
158	Hybrid interfaces for a new class of optical biosensors. Proceedings of SPIE, 2013, , .	0.8	0
159	Porous Silicon for Microdevices and Microsystems. , 2014, , 1-8.		0
160	Aminosilane-modified mesoporous oxidized silicon for in situ oligonucleotides synthesis and detection. , 2014, , .		0
161	Nanostructured photonic biosensor for heavy metal detection design and development of porous silicon optical biosensors. , 2014, , .		0
162	Three-dimensional imaging using digital holography and scanning electron microscopy. , 2014, , .		0

#	Article	IF	CITATIONS
163	PDIF-CN2 modified porous silicon optical and electrical transducers for biochemical sensing electrical and optical sensing by porous silicon devices. , 2014, , .		O
164	Hydrophobin-glucose interaction monitored by porous silicon optical multi-layers hybrid interfaces for sugar-proteins interaction monitoring. , $2014, , .$		0
165	Protein-modified porous silicon films for biomedical applications. , 2014, , 104-128.		0
166	Graphene oxide-based mesoporous silicon as tunable platform for optical applications., 2015,,.		0
167	Optically Controlled Drug Delivery System based on Porous Silicon and Microneedles patch. , 2015, , .		0
168	Photoluminescence of graphene oxide integrated with silicon substrates., 2015,,.		0
169	Hybrid microneedles devices for diagnostic and therapeutic applications: fabrication and preliminary results. Proceedings of SPIE, 2015, , .	0.8	0
170	Photoluminescence characterization of ZnO nanowires functionalization. , 2015, , .		0
171	Bioengineered Surfaces for Real-Time Label-Free Detection of Cancer Cells. , 0, , .		0
172	Optical Monitoring of Drug Release in Hybrid Patch Based on Polymer Microneedles and Porous Silicon Membrane. , 2016, , .		0
173	Functionalization of macroporous silicon for optical detection of bacteria. , 2017, , .		0
174	Porous Silicon for Microdevices and Microsystems. , 2016, , 1-9.		0
175	Porous Silicon for Microdevices and Microsystems. , 2018, , 1179-1187.		0
176	Diatomite nanovectors uptake in cancer cells: a Raman imaging study., 2018,,.		0
177	Intracellular SERS monitoring of drug release from plasmonic-assisted biosilica nanoparticles. EPJ Web of Conferences, 2021, 255, 13002.	0.1	0
178	Hydrogel-based Nanocomposite Plasmonic Sensors for Biomedical Applications. , 2020, , .		0
179	Plasmonic Hydrogel Nanocomposites with Combined Optical and Mechanical Properties for Biochemical Sensing., 2021, 5, .		0