

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452686/publications.pdf Version: 2024-02-01

WELLY

#	Article	IF	CITATIONS
1	Pyrolysis and catalytic pyrolysis of industrial lignins by TG-FTIR: Kinetics and products. Journal of Analytical and Applied Pyrolysis, 2014, 108, 295-300.	5.5	81
2	Selective Hydrodeoxygenation of 5-Hydroxymethylfurfural to 2,5-Dimethylfuran over Alloyed Cuâ^'Ni Encapsulated in Biochar Catalysts. ACS Sustainable Chemistry and Engineering, 2019, 7, 19556-19569.	6.7	56
3	Facile synthesis of <scp>ZnO</scp> nanorods grown on graphene sheets and its enhanced photocatalytic efficiency. Journal of Chemical Technology and Biotechnology, 2015, 90, 550-558.	3.2	53
4	Complementing Vanillin and Cellulose Production by Oxidation of Lignocellulose with Stirring Control. ACS Sustainable Chemistry and Engineering, 2020, 8, 2361-2374.	6.7	49
5	Synergistic Effect of EtOAc/H ₂ O Biphasic Solvent and Ru/C Catalyst for Cornstalk Hydrolysis Residue Depolymerization. ACS Sustainable Chemistry and Engineering, 2017, 5, 2981-2993.	6.7	31
6	Degradation of Vanillin During Lignin Valorization Under Alkaline Oxidation. Topics in Current Chemistry, 2018, 376, 29.	5.8	25
7	Simply packaging Ni nanoparticles inside SBA-15 channels by co-impregnation for dry reforming of methane. RSC Advances, 2017, 7, 24551-24560.	3.6	24
8	Modifying MgO with Carbon for Valorization of Lignin to Aromatics. ACS Sustainable Chemistry and Engineering, 2019, 7, 5751-5763.	6.7	19
9	Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons. Renewable Energy, 2022, 188, 195-210.	8.9	18
10	Revisiting Alkaline Pretreatment of Lignocellulose: Understanding the Structural Evolution of Three Components. Advanced Sustainable Systems, 2020, 4, 2000067.	5.3	11
11	The effect of Ru/C and MgCl2 on the cleavage of inter- and intra-molecular linkages during cornstalk hydrolysis residue valorization. Cellulose, 2020, 27, 799-823.	4.9	9
12	Two-Step Esterification–Hydrogenation of Bio-Oil to Alcohols and Esters over Raney Ni Catalysts. Catalysts, 2021, 11, 818.	3.5	7
13	Enhancement of Light Olefins Selectivity Over N-Doped Fischer-Tropsch Synthesis Catalyst Supported on Activated Carbon Pretreated with KMnO4. Catalysts, 2019, 9, 505.	3.5	5
14	The Protection of Câ^'O Bond of Pine Lignin in Different Organic Solvent Systems. ChemistrySelect, 2020, 5, 3850-3858.	1.5	4
15	Metal-alkali catalytic valorization of lignocellulose towards aromatics and small molecular alcohols and acids in a holistic approach. Cellulose, 2021, 28, 9589-9611.	4.9	4