Francisco José Madrid Cuevas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745260/publications.pdf Version: 2024-02-01

Francisco José Madrid

#	Article	IF	CITATIONS
1	A new approach for optimal offline time-series segmentation with error bound guarantee. Pattern Recognition, 2021, 115, 107917.	5.1	5
2	Unsupervised generation of polygonal approximations based on the convex hull. Pattern Recognition Letters, 2020, 135, 138-145.	2.6	9
3	A new approach for optimal time-series segmentation. Pattern Recognition Letters, 2020, 135, 153-159.	2.6	9
4	Simultaneous reconstruction and calibration for multi-view structured light scanning. Journal of Visual Communication and Image Representation, 2016, 39, 120-131.	1.7	22
5	An efficient unsupervised method for obtaining polygonal approximations of closed digital planar curves. Journal of Visual Communication and Image Representation, 2016, 39, 152-163.	1.7	11
6	Fast computation of optimal polygonal approximations of digital planar closed curves. Graphical Models, 2016, 84, 15-27.	1.1	7
7	Viewpoint-independent gait recognition through morphological descriptions of 3D human reconstructions. Image and Vision Computing, 2016, 48-49, 1-13.	2.7	11
8	A new approach for multi-view gait recognition on unconstrained paths. Journal of Visual Communication and Image Representation, 2016, 38, 396-406.	1.7	26
9	A new thresholding approach for automatic generation of polygonal approximations. Journal of Visual Communication and Image Representation, 2016, 35, 155-168.	1.7	11
10	Generation of fiducial marker dictionaries using Mixed Integer Linear Programming. Pattern Recognition, 2016, 51, 481-491.	5.1	350
11	Novel method to obtain the optimal polygonal approximation of digital planar curves based on Mixed Integer Programming. Journal of Visual Communication and Image Representation, 2015, 30, 106-116.	1.7	12
12	The computation of polygonal approximations for 2D contours based on a concavity tree. Journal of Visual Communication and Image Representation, 2014, 25, 1905-1917.	1.7	11
13	Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recognition, 2014, 47, 2280-2292.	5.1	1,626
14	The AVA Multi-View Dataset for Gait Recognition. Lecture Notes in Computer Science, 2014, , 26-39.	1.0	27
15	Three-dimensional action recognition using volume integrals. Pattern Analysis and Applications, 2012, 15, 289-298.	3.1	4
16	An octree-based method for shape from inconsistent silhouettes. Pattern Recognition, 2012, 45, 3245-3255.	5.1	6
17	A new measurement for assessing polygonal approximation of curves. Pattern Recognition, 2011, 44, 45-54.	5.1	20
18	A novel histogram transformation to improve the performance of thresholding methods in edge detection. Pattern Recognition Letters, 2011, 32, 676-693.	2.6	18

FRANCISCO JOSé MADRID

#	Article	IF	CITATIONS
19	Polygonal approximation of digital planar curves through break point suppression. Pattern Recognition, 2010, 43, 14-25.	5.1	82
20	Shape from silhouette using Dempster–Shafer theory. Pattern Recognition, 2010, 43, 2119-2131.	5.1	32
21	Solving the process of hysteresis without determining the optimal thresholds. Pattern Recognition, 2010, 43, 1224-1232.	5.1	19
22	Particle filtering with multiple and heterogeneous cameras. Pattern Recognition, 2010, 43, 2390-2405.	5.1	6
23	Determining Hysteresis Thresholds for Edge Detection by Combining the Advantages and Disadvantages of Thresholding Methods. IEEE Transactions on Image Processing, 2010, 19, 165-173.	6.0	44
24	Method for Polygonal Approximation through Dominant Points Deletion. Lecture Notes in Computer Science, 2010, , 350-358.	1.0	1
25	On candidates selection for hysteresis thresholds in edge detection. Pattern Recognition, 2009, 42, 1284-1296.	5.1	56
26	Multi-camera people tracking using evidential filters. International Journal of Approximate Reasoning, 2009, 50, 732-749.	1.9	34
27	People detection and tracking with multiple stereo cameras using particle filters. Journal of Visual Communication and Image Representation, 2009, 20, 339-350.	1.7	24
28	Contour simplification using a multi-scale local phase analysis. Image and Vision Computing, 2008, 26, 1499-1506.	2.7	2
29	Unimodal thresholding for edge detection. Pattern Recognition, 2008, 41, 2337-2346.	5.1	47
30	Automatic generation of consensus ground truth for the comparison of edge detection techniques. Image and Vision Computing, 2008, 26, 496-511.	2.7	50
31	Depth silhouettes for gesture recognition. Pattern Recognition Letters, 2008, 29, 319-329.	2.6	64
32	Dominant Points Detection Using Phase Congruence. Lecture Notes in Computer Science, 2007, , 138-145.	1.0	1
33	Evaluation of global thresholding techniques in non-contextual edge detection. Pattern Recognition Letters, 2005, 26, 1423-1434.	2.6	19
34	Dominant point detection: A new proposal. Image and Vision Computing, 2005, 23, 1226-1236.	2.7	48
35	Characterization of empirical discrepancy evaluation measures. Pattern Recognition Letters, 2004, 25, 35-47.	2.6	42