Roland Maas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452534/publications.pdf Version: 2024-02-01

Potential field modelling and U–Pb geochronology reveal the pluton emplacement dynamics of the Lower Devonian Tarnagulla Granodiorite, southeast Australia. Australian Journal of Earth Sciences, 2022, 69, 801-824. 1.0 2 Implications of high-Mg# adakitic magmatism at Hunter Ridge for arc magmatism of the Fiji - Vanuatu region. Earth and Planetary Science Letters, 2022, 590, 117592. 4.4 1 Geodynamic and Isotopic Constraints on the Genesis of Kimberlites, Lamproites and Related Magmas From the Finnish Segment of the Karelian Craton. Geochemistry, Geophysics, Geosystems, 2022, 23, . 2.5 2	#	Article	IF	CITATIONS
 Implications of high-Mg# adakitic magmatism at Hunter Ridge for arc magmatism of the Fiji - Vanuatu region. Earth and Planetary Science Letters, 2022, 590, 117592. Geodynamic and Isotopic Constraints on the Genesis of Kimberlites, Lamproites and Related Magmas From the Finnish Segment of the Karelian Craton. Geochemistry, Geophysics, Geosystems, 2022, 23, . 	1	Potential field modelling and U–Pb geochronology reveal the pluton emplacement dynamics of the Lower Devonian Tarnagulla Granodiorite, southeast Australia. Australian Journal of Earth Sciences, 2022, 69, 801-824.	1.0	2
Geodynamic and Isotopic Constraints on the Genesis of Kimberlites, Lamproites and Related Magmas From the Finnish Segment of the Karelian Craton. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2	Implications of high-Mg# adakitic magmatism at Hunter Ridge for arc magmatism of the Fiji - Vanuatu region. Earth and Planetary Science Letters, 2022, 590, 117592.	4.4	1
	3	Geodynamic and Isotopic Constraints on the Genesis of Kimberlites, Lamproites and Related Magmas From the Finnish Segment of the Karelian Craton. Geochemistry, Geophysics, Geosystems, 2022, 23, .	2.5	4

 $_{\rm 4}$ $\,$ $\,$ Otolith chemistry delineates the influence of natal origin, dispersal and flow on the population

ROLAND MAAS

#	Article	IF	CITATIONS
19	Temporal and spatial variation in strontium in a tropical river: implications for otolith chemistry analyses of fish migration. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 533-545.	1.4	16
20	Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?. Nature Communications, 2015, 6, 6837.	12.8	78
21	ISOTOPIC CONSTRAINTS (Pb, Rb-Sr, Sm-Nd) ON THE SOURCES OF EARLY CAMBRIAN PEGMATITES WITH BORON AND BERYLLIUM MINERALS IN THE LARSEMANN HILLS, PRYDZ BAY, ANTARCTICA. Canadian Mineralogist, 2015, 53, 249-272.	1.0	32
22	The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nature Communications, 2013, 4, 2921.	12.8	36
23	Recruitment sources and dispersal of an invasive fish in a large river system as revealed by otolith chemistry analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 953-963.	1.4	30
24	Improved laser ablation Uâ \in Pb zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	820
25	Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a precursor to final Gondwana break-up. Geological Society Special Publication, 2009, 321, 89-118.	1.3	83
26	U–Pb geochronology of speleothems by MC-ICPMS. Quaternary Geochronology, 2006, 1, 208-221.	1.4	128
27	SHRIMP ion probe zircon geochronology and Sr and Nd isotope geochemistry for southern Longwood Range and Bluff Peninsula intrusive rocks of Southland, New Zealand. New Zealand Journal of Geology, and Geophysics, 2006, 49, 291-303.	1.8	25
28	Nd and Sr isotopic signatures of metasedimentary rocks around the South Pacific margin and implications for their provenance. Geological Society Special Publication, 2005, 246, 113-141.	1.3	31
29	In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS: interference corrections, high spatial resolution and an example from otolith studies. Journal of Analytical Atomic Spectrometry, 2005, 20, 22.	3.0	190
30	Provenance analysis using conglomerate clast lithologies: a case study from the Pahau terrane of New Zealand. Sedimentary Geology, 2004, 167, 57-89.	2.1	62
31	The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H 2 O contents and generated during tectonic transition. Contributions To Mineralogy and Petrology, 1998, 130, 225-239.	3.1	72
32	Field characteristics, petrography, and geochronology of the Hohonu Batholith and the adjacent Granite Hill Complex, North Westland, New Zealand. New Zealand Journal of Geology, and Geophysics, 1997, 40, 1-17.	1.8	59
33	Pb-isotope ratios and the petrogenesis of the Tunkillia Suite, Gawler Craton. Australian Journal of Earth Sciences, 0, , 1-21.	1.0	1
34	Acid leaching of micas: improved Rb-Sr geochronology of disequilibrated rocks from zones of alteration and deformation. Journal of the Virtual Explorer, 0, 13, .	0.0	3
35	Formation of Sediment-Hosted Opal-AG At Lightning Ridge (New South Wales, Australia): Refining the Deep Weathering Model. Journal of Geology, 0, , .	1.4	2