
Roland Maas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452534/publications.pdf Version: 2024-02-01

POLAND MAAS

#	Article	lF	CITATIONS
1	Improved laser ablation $U\hat{a}\in Pb$ zircon geochronology through robust downhole fractionation correction. Geochemistry, Geophysics, Geosystems, 2010, 11, .	2.5	820
2	In situ Sr-isotope analysis of carbonates by LA-MC-ICP-MS: interference corrections, high spatial resolution and an example from otolith studies. Journal of Analytical Atomic Spectrometry, 2005, 20, 22.	3.0	190
3	U–Pb geochronology of speleothems by MC-ICPMS. Quaternary Geochronology, 2006, 1, 208-221.	1.4	128
4	Cretaceous felsic volcanism in New Zealand and Lord Howe Rise (Zealandia) as a precursor to final Gondwana break-up. Geological Society Special Publication, 2009, 321, 89-118.	1.3	83
5	Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?. Nature Communications, 2015, 6, 6837.	12.8	78
6	The final stages of kimberlite petrogenesis: Petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chemical Geology, 2017, 455, 342-356.	3.3	78
7	The Hohonu Batholith of North Westland, New Zealand: granitoid compositions controlled by source H 2 O contents and generated during tectonic transition. Contributions To Mineralogy and Petrology, 1998, 130, 225-239.	3.1	72
8	Post-collisional alkaline magmatism as gateway for metal and sulfur enrichment of the continental lower crust. Geochimica Et Cosmochimica Acta, 2018, 223, 175-197.	3.9	65
9	Provenance analysis using conglomerate clast lithologies: a case study from the Pahau terrane of New Zealand. Sedimentary Geology, 2004, 167, 57-89.	2.1	62
10	Field characteristics, petrography, and geochronology of the Hohonu Batholith and the adjacent Granite Hill Complex, North Westland, New Zealand. New Zealand Journal of Geology, and Geophysics, 1997, 40, 1-17.	1.8	59
11	Reconnaissance Basement Geology and Tectonics of South Zealandia. Tectonics, 2019, 38, 516-551.	2.8	46
12	Petrogenesis of a Hybrid Cluster of Evolved Kimberlites and Ultramafic Lamprophyres in the Kuusamo Area, Finland. Journal of Petrology, 2019, 60, 2025-2050.	2.8	37
13	The discovery of kimberlites in Antarctica extends the vast Gondwanan Cretaceous province. Nature Communications, 2013, 4, 2921.	12.8	36
14	Naturaliste Plateau: constraints on the timing and evolution of the Kerguelen Large Igneous Province and its role in Gondwana breakup. Australian Journal of Earth Sciences, 2017, 64, 851-869.	1.0	35
15	ISOTOPIC CONSTRAINTS (Pb, Rb-Sr, Sm-Nd) ON THE SOURCES OF EARLY CAMBRIAN PEGMATITES WITH BORON AND BERYLLIUM MINERALS IN THE LARSEMANN HILLS, PRYDZ BAY, ANTARCTICA. Canadian Mineralogist, 2015, 53, 249-272.	1.0	32
16	Nd and Sr isotopic signatures of metasedimentary rocks around the South Pacific margin and implications for their provenance. Geological Society Special Publication, 2005, 246, 113-141.	1.3	31
17	Recruitment sources and dispersal of an invasive fish in a large river system as revealed by otolith chemistry analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2013, 70, 953-963.	1.4	30
18	The antiquity of Nullarbor speleothems and implications for karst palaeoclimate archives. Scientific Reports, 2019, 9, 603.	3.3	26

Roland Maas

#	Article	IF	CITATIONS
19	SHRIMP ion probe zircon geochronology and Sr and Nd isotope geochemistry for southern Longwood Range and Bluff Peninsula intrusive rocks of Southland, New Zealand. New Zealand Journal of Geology, and Geophysics, 2006, 49, 291-303.	1.8	25
20	lsotopic analyses of clinopyroxenes demonstrate the effects of kimberlite melt metasomatism upon the lithospheric mantle. Lithos, 2020, 370-371, 105595.	1.4	23
21	Temporal and spatial variation in strontium in a tropical river: implications for otolith chemistry analyses of fish migration. Canadian Journal of Fisheries and Aquatic Sciences, 2017, 74, 533-545.	1.4	16
22	A comparison of geochronological methods commonly applied to kimberlites and related rocks: Three case studies from Finland. Chemical Geology, 2020, 558, 119899.	3.3	16
23	Genesis of the Paleoproterozoic Ammassalik Intrusive Complex, south-east Greenland. Precambrian Research, 2018, 315, 19-44.	2.7	13
24	Corrections for initial isotopic disequilibrium in the speleothem U-Pb dating method. Quaternary Geochronology, 2019, 54, 101009.	1.4	10
25	A single-column extraction chemistry for isotope dilution U-Pb dating of carbonate. Chemical Geology, 2020, 531, 119311.	3.3	10

 $_{26}$ \qquad Otolith chemistry delineates the influence of natal origin, dispersal and flow on the population