Jean-pierre Quivy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745249/publications.pdf

Version: 2024-02-01

41 papers

4,057 citations

236925 25 h-index 302126 39 g-index

42 all docs 42 docs citations

times ranked

42

4931 citing authors

#	Article	IF	CITATIONS
1	Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nature Genetics, 2002, 30, 329-334.	21.4	621
2	HIRA Is Critical for a Nucleosome Assembly Pathway Independent of DNA Synthesis. Molecular Cell, 2002, 9, 1091-1100.	9.7	374
3	A CAF-1–PCNA-Mediated Chromatin Assembly Pathway Triggered by Sensing DNA Damage. Molecular and Cellular Biology, 2000, 20, 1206-1218.	2.3	294
4	Histone Chaperones: Assisting Histone Traffic and Nucleosome Dynamics. Annual Review of Biochemistry, 2014, 83, 487-517.	11.1	258
5	Human Asf1 Regulates the Flow of S Phase Histones during Replicational Stress. Molecular Cell, 2005, 17, 301-311.	9.7	241
6	Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO Journal, 2012, 31, 3678-3690.	7.8	221
7	The HP1α–CAF1–SetDB1â€containing complex provides H3K9me1 for Suv39â€mediated K9me3 in pericentr heterochromatin. EMBO Reports, 2009, 10, 769-775.	ic 4.5	201
8	An epigenetic silencing pathway controlling T helper 2 cell lineage commitment. Nature, 2012, 487, 249-253.	27.8	199
9	SUMOylation promotes de novo targeting of HP1 \hat{l} ± to pericentric heterochromatin. Nature Genetics, 2011, 43, 220-227.	21.4	191
10	The epigenetic control of stemness in CD8 ⁺ T cell fate commitment. Science, 2018, 359, 177-186.	12.6	184
11	A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO Journal, 2004, 23, 3516-3526.	7.8	159
12	Chromatin plasticity: A versatile landscape that underlies cell fate and identity. Science, 2018, 361, 1332-1336.	12.6	152
13	CAF-1 Is Essential for Heterochromatin Organization in Pluripotent Embryonic Cells. PLoS Genetics, 2006, 2, e181.	3.5	149
14	The HP1–p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nature Structural and Molecular Biology, 2008, 15, 972-979.	8.2	127
15	The replication kinase Cdc7 $\hat{a}\in D$ bf4 promotes the interaction of the p150 subunit of chromatin assembly factor 1 with proliferating cell nuclear antigen. EMBO Reports, 2006, 7, 817-823.	4.5	77
16	High-resolution visualization of H3 variants during replication reveals their controlled recycling. Nature Communications, 2018, 9, 3181.	12.8	74
17	Interplay between mismatch repair and chromatin assembly. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1895-1900.	7.1	68
18	The SUMO protease SENP7 is a critical component to ensure HP1 enrichment at pericentric heterochromatin. Nature Structural and Molecular Biology, 2012, 19, 458-460.	8.2	63

#	Article	IF	CITATIONS
19	The SENP7 SUMO-Protease Presents a Module of Two HP1 Interaction Motifs that Locks HP1 Protein at Pericentric Heterochromatin. Cell Reports, 2015, 10, 771-782.	6.4	40
20	Establishment of a replication fork barrier following induction of DNA binding in mammalian cells. Cell Cycle, 2014, 13, 1607-1616.	2.6	36
21	Compaction Kinetics on Single DNAs: Purified Nucleosome Reconstitution Systems versus Crude Extract. Biophysical Journal, 2005, 89, 3647-3659.	0.5	32
22	The histone chaperone Asf1 is dispensable for direct de novo histone deposition in Xenopus egg extracts. Chromosoma, 2007, 116 , $487-496$.	2.2	32
23	KAP1 facilitates reinstatement of heterochromatin after DNA replication. Nucleic Acids Research, 2018, 46, 8788-8802.	14.5	32
24	CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma, 2009, 118, 235-248.	2.2	31
25	An improved protocol for genomic sequencing and footprinting by ligation-mediated PCR. Nucleic Acids Research, 1993, 21, 2779-2781.	14.5	29
26	The methyltransferase Suv39h1 links the SUMO pathway to HP1 \hat{l}_{\pm} marking at pericentric heterochromatin. Nature Communications, 2016, 7, 12224.	12.8	27
27	The histone chaperone CAF-1 cooperates with the DNA methyltransferases to maintain <i>Cd4</i> silencing in cytotoxic T cells. Genes and Development, 2019, 33, 669-683.	5.9	27
28	The Architecture of the Heat-inducibleDrosophila hsp27Promoter in Nuclei. Journal of Molecular Biology, 1996, 256, 249-263.	4.2	26
29	HIRA-dependent boundaries between H3 variants shape early replication in mammals. Molecular Cell, 2022, 82, 1909-1923.e5.	9.7	12
30	CD8+T cell responsiveness to anti-PD-1 is epigenetically regulated by $Suv39h1$ in melanomas. Nature Communications, 2022, 13, .	12.8	11
31	Solid phase technology improves coupled gel shift/footprinting analysis. Nucleic Acids Research, 1997, 25, 453-454.	14.5	10
32	Tetracycline-Regulated Gene Expression Switch in Xenopus laevis. Experimental Cell Research, 2000, 256, 392-399.	2.6	10
33	Tetratricopeptide repeat domain 7A is a nuclear factor that modulates transcription and chromatin structure. Cell Discovery, 2018, 4, 61.	6.7	10
34	CENP-A Subnuclear Localization Pattern as Marker Predicting Curability by Chemoradiation Therapy for Locally Advanced Head and Neck Cancer Patients. Cancers, 2021, 13, 3928.	3.7	10
35	Characterization of chromatin domains by 3D fluorescence microscopy: An automated methodology for quantitative analysis and nuclei screening. BioEssays, 2012, 34, 509-517.	2.5	9
36	CENP-A Regulation and Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, .	3.7	9

#	Article	IF	CITATIONS
37	Genomic Footprinting ofDrosophilaEmbryo Nuclei by Linker Tag Selection LM-PCR. Methods, 1997, 11, 171-179.	3.8	5
38	Suv39h1 links the SUMO pathway to constitutive heterochromatin. Molecular and Cellular Oncology, 2016, 3, e1225546.	0.7	4
39	Determination of Unknown Genomic Sequences Without Cloning. , 1996, 65, 119-132.		O
40	The SENP7 SUMO-Protease Presents a Module of Two HP1 Interaction Motifs that Locks HP1 Protein at Pericentric Heterochromatin. Cell Reports, 2016, 14, 2502.	6.4	0
41	Determination of Unknown Genomic Sequences Without Cloning. , 2003, , 373-383.		0