Roberto A Parra

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452279/publications.pdf

Version: 2024-02-01

22 papers

208 citations

1040056 9 h-index 14 g-index

23 all docs 23 docs citations

23 times ranked 161 citing authors

#	Article	IF	CITATIONS
1	Experimental Determination of the Conversion Rate of Molten White Metal by Supplying Individual Air Bubbles. Metals, 2022, 12, 980.	2.3	O
2	Copper Oxide Spectral Emission Detection in Chalcopyrite and Copper Concentrate Combustion. Processes, 2021, 9, 188.	2.8	6
3	Laser induced breakdown spectroscopy for monitoring the molten phase desulfurization process of blister copper. Analytica Chimica Acta, 2021, 1178, 338805.	5.4	3
4	A Radiometric Technique for Monitoring the Desulfurization Process of Blister Copper. Sensors, 2021, 21, 842.	3.8	5
5	Sensors and Process Control in Copper Smelters: A Review of Current Systems and Some Opportunities. Minerals (Basel, Switzerland), 2021, 11, 1.	2.0	44
6	Comparative analyses of the infiltration of Al–Cr–O and Mg–Cr–O refractories by molten phases in the copper-making process using the sessile drop technique. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2020, 59, 15-24.	1.9	5
7	Partial Roasting of High-Arsenic Copper Concentrates. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2020, 51, 2030-2038.	2.1	7
8	Quantitative Methods to Support Data Acquisition Modernization within Copper Smelters. Processes, 2020, 8, 1478.	2.8	16
9	On the Detection of Spectral Emissions of Iron Oxides in Combustion Experiments of Pyrite Concentrates. Sensors, 2020, 20, 1284.	3.8	15
10	Spectral Characterization of Copper and Iron Sulfide Combustion: A Multivariate Data Analysis Approach for Mineral Identification on the Blend. Metals, 2019, 9, 1017.	2.3	11
11	Post-mortem study of magnesia-chromite refractory used in the gas area of a Submerged Arc Furnace for the copper-making process. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2019, 58, 178-188.	1.9	4
12	Comparative analysis of refractory wear in the copper-making process by a novel (industrial) dynamic test. Ceramics International, 2019, 45, 1535-1544.	4.8	5
13	Copper smelting and converting: past and present Chilean developments. Mineral Processing and Extractive Metallurgy: Transactions of the Institute of Mining and Metallurgy, 2019, 128, 108-116.	0.2	9
14	Analytical instrumentation for copper pyrometallurgy: challenges and opportunities. IFAC-PapersOnLine, 2018, 51, 251-256.	0.9	11
15	Post-mortem Study of Magnesia–Chromite Refractory Used in a Submerged Arc Furnace in the Copper-Making Process. Jom, 2018, 70, 2435-2442.	1.9	7
16	Flash Smelting Copper Concentrates Spectral Emission Measurements. Sensors, 2018, 18, 2009.	3.8	20
17	Slag Reduction Kinetics of Copper Slags from Primary Copper Production. , 2016, , 657-665.		0
18	Kinetic aspects on ferric arsenate formation in a fix bed gas-solid reaction system. DYNA (Colombia), 2015, 82, 90-95.	0.4	2

#	Article	IF	CITATIONS
19	New Techniques to Detect the Suitable Time to Close the Tap Hole of a Blast Furnace. Steel Research International, 2012, 83, 783-790.	1.8	4
20	The Mechanism of Thermal Spalling in the Wear of the Pierce-Smith Copper Converter. Journal of the Ceramic Society of Japan, 2006, 114 , 672 - 675 .	1.3	11
21	Analyzing furnace-lining integrity using nodal wear modeling. Jom, 2005, 57, 29-36.	1.9	11
22	Corrosion Mechanism and Wear Prediction of the Sole of an Electric Arc Furnace ISIJ International, 2003, 43, 192-200.	1.4	11