Iso Christl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452211/publications.pdf Version: 2024-02-01

ISO CHDISTI

#	Article	IF	CITATIONS
1	Synthetic coprecipitates of exopolysaccharides and ferrihydrite. Part I: Characterization. Geochimica Et Cosmochimica Acta, 2008, 72, 1111-1127.	1.6	165
2	Relating Ion Binding by Fulvic and Humic Acids to Chemical Composition and Molecular Size. 2. Metal Binding. Environmental Science & Technology, 2001, 35, 2512-2517.	4.6	158
3	Chemical Heterogeneity of Organic Soil Colloids Investigated by Scanning Transmission X-ray Microscopy and C-1s NEXAFS Microspectroscopy. Environmental Science & Technology, 2005, 39, 9094-9100.	4.6	147
4	Relating Ion Binding by Fulvic and Humic Acids to Chemical Composition and Molecular Size. 1. Proton Binding. Environmental Science & Technology, 2001, 35, 2505-2511.	4.6	135
5	Interaction of copper and fulvic acid at the hematite-water interface. Geochimica Et Cosmochimica Acta, 2001, 65, 3435-3442.	1.6	120
6	Competitive sorption of carbonate and arsenic to hematite: Combined ATR-FTIR and batch experiments. Journal of Colloid and Interface Science, 2012, 377, 313-321.	5.0	116
7	Competitive sorption of copper and lead at the oxide-water interface: Implications for surface site density. Geochimica Et Cosmochimica Acta, 1999, 63, 2929-2938.	1.6	108
8	C-1s NEXAFS Spectroscopy Reveals Chemical Fractionation of Humic Acid by Cation-Induced Coagulation. Environmental Science & amp; Technology, 2007, 41, 1915-1920.	4.6	97
9	Reduction and Reoxidation of Humic Acid: Influence on Spectroscopic Properties and Proton Binding. Environmental Science & Technology, 2010, 44, 5787-5792.	4.6	95
10	Competitive sorption of protons and metal cations onto kaolinite: experiments and modeling. Journal of Colloid and Interface Science, 2005, 282, 270-282.	5.0	87
11	Effect of Humic and Fulvic Acid Concentrations and Ionic Strength on Copper and Lead Binding. Environmental Science & Technology, 2005, 39, 5319-5326.	4.6	86
12	Cation Binding of Antimicrobial Sulfathiazole to Leonardite Humic Acid. Environmental Science & Technology, 2009, 43, 6632-6638.	4.6	73
13	Polymerization of Silicate on Hematite Surfaces and Its Influence on Arsenic Sorption. Environmental Science & Technology, 2012, 46, 13235-13243.	4.6	71
14	Characterization of dissolved organic matter in anoxic rock extracts and in situ pore water of the Opalinus Clay. Applied Geochemistry, 2007, 22, 2926-2939.	1.4	70
15	Sorption of Cu and Pb to kaolinite-fulvic acid colloids: Assessment of sorbent interactions. Geochimica Et Cosmochimica Acta, 2005, 69, 1675-1686.	1.6	66
16	Reduction and Reoxidation of Humic Acid: Influence on Speciation of Cadmium and Silver. Environmental Science & Technology, 2012, 46, 8808-8816.	4.6	66
17	Copper Redox Transformation and Complexation by Reduced and Oxidized Soil Humic Acid. 1. X-ray Absorption Spectroscopy Study. Environmental Science & Technology, 2013, 47, 10903-10911.	4.6	66
18	lsolation and characterization of dissolved organic matter from the Callovo–Oxfordian formation. Applied Geochemistry, 2007, 22, 1537-1548.	1.4	63

ISO CHRISTL

#	Article	IF	CITATIONS
19	Clarithromycin and Tetracycline Binding to Soil Humic Acid in the Absence and Presence of Calcium. Environmental Science & Technology, 2016, 50, 9933-9942.	4.6	51
20	Aggregation Kinetics of Kaoliniteâ^'Fulvic Acid Colloids as Affected by the Sorption of Cu and Pb. Environmental Science & Technology, 2005, 39, 807-813.	4.6	50
21	Chemical composition of aquatic dissolved organic matter in five boreal forest catchments sampled in spring and fall seasons. Biogeochemistry, 2006, 80, 263-275.	1.7	49
22	Title is missing!. Hyperfine Interactions, 2001, 136, 73-95.	0.2	41
23	Climateâ€sensitive ecosystem carbon dynamics along the soil chronosequence of the <scp>D</scp> amma glacier forefield, <scp>S</scp> witzerland. Global Change Biology, 2012, 18, 1941-1955.	4.2	38
24	lonic strength- and pH-dependence of calcium binding by terrestrial humic acids. Environmental Chemistry, 2012, 9, 89.	0.7	36
25	Copper Redox Transformation and Complexation by Reduced and Oxidized Soil Humic Acid. 2. Potentiometric Titrations and Dialysis Cell Experiments. Environmental Science & Technology, 2013, 47, 10912-10921.	4.6	35
26	Nitrogen and phosphorus availability at early stages of soil development in the Damma glacier forefield, Switzerland; implications for establishment of N2-fixing plants. Plant and Soil, 2016, 404, 251-261.	1.8	29
27	Interactions of ferrous iron with clay mineral surfaces during sorption and subsequent oxidation. Environmental Sciences: Processes and Impacts, 2020, 22, 1355-1367.	1.7	25
28	Reductive solubilization of arsenic in a mining-impacted river floodplain: Influence of soil properties and temperature. Environmental Pollution, 2017, 231, 722-731.	3.7	24
29	Aerobic Reduction of Chromium(VI) by <i>Pseudomonas corrugata</i> 28: Influence of Metabolism and Fate of Reduced Chromium. Geomicrobiology Journal, 2012, 29, 173-185.	1.0	22
30	Zinc solubility in tropical paddy soils: A multi-chemical extraction technique study. Geoderma, 2017, 301, 1-10.	2.3	22
31	Soil-to-plant transfer of arsenic and phosphorus along a contamination gradient in the mining-impacted Ogosta River floodplain. Science of the Total Environment, 2016, 572, 742-754.	3.9	21
32	Two-year and multi-site field trials to evaluate soil amendments for controlling cadmium accumulation in rice grain. Environmental Pollution, 2021, 289, 117918.	3.7	20
33	Copper complexation of methanobactin isolated from Methylosinus trichosporium OB3b: pH-dependent speciation and modeling. Journal of Inorganic Biochemistry, 2012, 116, 55-62.	1.5	19
34	Competitive ligand exchange between <scp><scp>Cu</scp></scp> –humic acid complexes and methanobactin. Geobiology, 2013, 11, 44-54.	1.1	18
35	Proton and Trivalent Metal Cation Binding by Dissolved Organic Matter in the Opalinus Clay and the Callovo-Oxfordian Formation. Environmental Science & amp; Technology, 2008, 42, 5985-5991.	4.6	17
36	Biochar as possible long-term soil amendment for phytostabilisation of TE-contaminated soils. Environmental Science and Pollution Research, 2016, 23, 17449-17458.	2.7	17

ISO CHRISTL

#	Article	IF	CITATIONS
37	Sulfur amendments to soil decrease inorganic arsenic accumulation in rice grain under flooded and nonflooded conditions: Insights from temporal dynamics of porewater chemistry and solid-phase arsenic solubility. Science of the Total Environment, 2021, 779, 146352.	3.9	16
38	The Effect of Aeration on Mn(II) Sorbed to Clay Minerals and Its Impact on Cd Retention. Environmental Science & Technology, 2021, 55, 1650-1658.	4.6	16
39	Surface precipitation of Mn ²⁺ on clay minerals enhances Cd ²⁺ sorption under anoxic conditions. Environmental Sciences: Processes and Impacts, 2020, 22, 1654-1665.	1.7	15
40	Isolation and purification of Cu-free methanobactin from Methylosinus trichosporiumOB3b. Geochemical Transactions, 2011, 12, 2.	1.8	13
41	Effect of NOM on copper sulfide nanoparticle growth, stability, and oxidative dissolution. Environmental Science: Nano, 2020, 7, 1163-1178.	2.2	11
42	Effects of natural organic matter (NOM), metal-to-sulfide ratio and Mn2+on cadmium sulfide nanoparticle growth and colloidal stability. Environmental Science: Nano, 2020, 7, 3385-3404.	2.2	7
43	Magnesium binding by terrestrial humic acids. Environmental Chemistry, 2018, 15, 317.	0.7	6
44	Copper mobilisation from Cu sulphide minerals by methanobactin: Effect of <scp>pH</scp> , oxygen and natural organic matter. Geobiology, 2022, 20, 690-706.	1.1	5
45	Exploring Key Soil Parameters Relevant to Arsenic and Cadmium Accumulation in Rice Grain in Southern China. Soil Systems, 2022, 6, 36.	1.0	4
46	Effect of extreme metal(loid) concentrations on prokaryotic community structure in floodplain soils contaminated with mine waste. Applied Soil Ecology, 2019, 144, 182-195.	2.1	2