
Christina H Scheel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7452019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Expression of DNA mismatch repair proteins in melanoma patients treated with immune checkpoint inhibitors. Journal of Cancer Research and Clinical Oncology, 2023, 149, 1241-1247.	2.5	1
2	Development of thoracic sarcoid reactions associated with complete response to antiâ€PDâ€1 therapy in a patient with advanced cutaneous squamous cell carcinoma. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 35-40.	2.4	3
3	Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk. Nature Communications, 2022, 13, 562.	12.8	34
4	Pan-immune-inflammation value independently predicts disease recurrence in patients with Merkel cell carcinoma. Journal of Cancer Research and Clinical Oncology, 2022, 148, 3183-3189.	2.5	19
5	The pan-immune-inflammation value and systemic immune-inflammation index in advanced melanoma patients under immunotherapy. Journal of Cancer Research and Clinical Oncology, 2022, 148, 3103-3108.	2.5	24
6	Antibody-Negative Paraneoplastic Autoimmune Multiorgan Syndrome (PAMS) in a Patient with Follicular Lymphoma Accompanied by an Excess of Peripheral Blood CD8+ Lymphocytes. Current Oncology, 2022, 29, 2395-2405.	2.2	4
7	Hyperpigmented Scleroderma-like Lesions under Combined Pembrolizumab and Pemetrexed Treatment of Non-Small Lung Cancer. Dermato, 2022, 2, 8-13.	0.9	2
8	Outcome of extracorporeal photopheresis in mycosis fungoides patients is not predicted by quotients of systemic immuneâ€inflammatory biomarkers. Journal of Clinical Apheresis, 2022, , .	1.3	3
9	Prognostic Performance of the Derived Neutrophil-to-Lymphocyte Ratio in Stage IV Melanoma Patients Treated with Immune Checkpoint Inhibitors. Dermato, 2022, 2, 14-20.	0.9	3
10	Management of immuneâ€related adverse events in antiâ€PDâ€1â€treated patients with advanced cutaneous squamous cell carcinoma. Journal of the European Academy of Dermatology and Venereology, 2022, 36, 23-28.	2.4	8
11	Erythrodermic pityriasis rubra pilaris after <scp>SARS oV</scp> â€2 vaccination with concomitant <scp>COVID</scp> â€19 infection. Journal of the European Academy of Dermatology and Venereology, 2022, 36, .	2.4	10
12	Undifferentiated pleomorphic sarcoma of the breast with neoplastic fever: case report and genomic characterization. Journal of Cancer Research and Clinical Oncology, 2022, , 1.	2.5	5
13	First Onset of Pityriasis Rubra Pilaris following SARS-CoV-2 Booster Vaccination: Case Report and Review of the Literature. Dermato, 2022, 2, 73-78.	0.9	3
14	Onset of subacute cutaneous lupus erythematosus after the initiation of immune checkpoint inhibitor therapy of cancer. Lupus, 2021, 30, 531-533.	1.6	5
15	Mechanical plasticity of collagen directs branch elongation in human mammary gland organoids. Nature Communications, 2021, 12, 2759.	12.8	47
16	Radiationâ€induced morphea – a rare, but not to be dismissed, adverse effect of radiotherapy. Dermatologic Therapy, 2021, 34, e15041.	1.7	1
17	Generation of ductal organoids from normal mammary luminal cells reveals invasive potential. Journal of Pathology, 2021, 255, 451-463.	4.5	2
18	Surface-tension-induced budding drives alveologenesis in human mammary gland organoids. Nature Physics. 2021, 17, 1130-1136.	16.7	22

2

CHRISTINA H SCHEEL

#	Article	IF	CITATIONS
19	Cancer and Immune Checkpoint Inhibitor Treatment in the Era of SARS-CoV-2 Infection. Cancers, 2020, 12, 3383.	3.7	11
20	Annular leukocytoclastic vasculitis in a patient with PR3-antineutrophil cytoplasmic antibody-positive ulcerative colitis. European Journal of Dermatology, 2020, 30, 420-421.	0.6	1
21	Does very early timing of lymph node surgery after resection of the primary tumour improve the clinical outcome of patients with melanoma?. Clinical and Experimental Dermatology, 2020, 45, 1011-1018.	1.3	3
22	Concurrent Vogt–Koyanagi–Harada disease and impressive response to immune checkpoint blockade in metastatic melanoma. Immunotherapy, 2020, 12, 439-444.	2.0	21
23	On the use of immune checkpoint inhibitors in patients with viral infections including COVID-19. , 2020, 8, e001145.		48
24	Expression of Lefty predicts Merkel cell carcinomaâ€specific death. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 2016-2020.	2.4	2
25	Morphological Analysis of Human Milk Membrane Enclosed Structures Reveals Diverse Cells and Cell-like Milk Fat Globules. Journal of Mammary Gland Biology and Neoplasia, 2020, 25, 397-408.	2.7	7
26	FSP1 is a glutathione-independent ferroptosis suppressor. Nature, 2019, 575, 693-698.	27.8	1,624
27	BRD4 promotes p63 and GRHL3 expression downstream of FOXO in mammary epithelial cells. Nucleic Acids Research, 2017, 45, gkw1276.	14.5	22
28	The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERα. Nature, 2017, 541, 541-545.	27.8	114
29	ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nature Chemical Biology, 2017, 13, 91-98.	8.0	2,069
30	An Organotypic 3D Assay for Primary Human Mammary Epithelial Cells that Recapitulates Branching Morphogenesis. Methods in Molecular Biology, 2017, 1612, 125-137.	0.9	17
31	Oncogenic CARMA1 couples NF-κB and β-catenin signaling in diffuse large B-cell lymphomas. Oncogene, 2016, 35, 4269-4281.	5.9	44
32	Twist1 induces distinct cell states depending on TGFBR1-activation. Oncotarget, 2016, 7, 30396-30407.	1.8	12
33	Abstract 1982: BRD4-FOXO axis maintains differentiated mammary epithelial phenotype by regulating p63 and GRHL3 expression. , 2016, , .		0
34	Quantification of regenerative potential in primary human mammary epithelial cells. Development (Cambridge), 2015, 142, 3239-51.	2.5	105
35	Stem-Cell-like Properties and Epithelial Plasticity Arise as Stable Traits after Transient Twist1 Activation. Cell Reports, 2015, 10, 131-139.	6.4	155
36	Overcoming EMT-driven therapeutic resistance by BH3 mimetics. Oncoscience, 2014, 1, 706-708.	2.2	12

CHRISTINA H SCHEEL

#	Article	IF	CITATIONS
37	Epigenetic plasticity: A central regulator of epithelial-to-mesenchymal transition in cancer. Oncotarget, 2014, 5, 2016-2029.	1.8	109
38	Bcl-xL mediates therapeutic resistance of a mesenchymal breast cancer cell subpopulation. Oncotarget, 2014, 5, 11778-11791.	1.8	30
39	Abstract B25: Inhibition of autocrine signaling as a strategy to target tumor-initiating breast cancer cells. , 2013, , .		0
40	Cancer stem cells and epithelial–mesenchymal transition: Concepts and molecular links. Seminars in Cancer Biology, 2012, 22, 396-403.	9.6	781
41	Paracrine and Autocrine Signals Induce and Maintain Mesenchymal and Stem Cell States in the Breast. Cell, 2011, 145, 926-940.	28.9	788
42	Phenotypic plasticity and epithelialâ€mesenchymal transitions in cancer and normal stem cells?. International Journal of Cancer, 2011, 129, 2310-2314.	5.1	191
43	Normal and neoplastic nonstem cells can spontaneously convert to a stem-like state. Proceedings of the United States of America, 2011, 108, 7950-7955.	7.1	1,024
44	Human tumors instigate granulin-expressing hematopoietic cells that promote malignancy by activating stromal fibroblasts in mice. Journal of Clinical Investigation, 2011, 121, 784-799.	8.2	177
45	Abstract LB-108: Formation and maintenance of mesenchymal and stem-cell states in the breast by paracrine and autocrine signals. , 2011, , .		0
46	Autocrine TGF-Î ² and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20009-20014.	7.1	682
47	Role of DNA methylation in miR-200c/141 cluster silencing in invasive breast cancer cells. BMC Research Notes, 2010, 3, 219.	1.4	146
48	Abstract C75: Granulinâ \in expressing bone marrow cells promote the outgrowth of indolent tumors. , 2009, , .		0
49	Adaptation versus Selection: The Origins of Metastatic Behavior. Cancer Research, 2007, 67, 11476-11480.	0.9	120
50	Chromosomal alterations in osteosarcoma cell lines revealed by comparative genomic hybridization and multicolor karyotyping. Cancer Genetics and Cytogenetics, 2003, 140, 145-152.	1.0	35
51	Telomere lengthening in telomerase-negative cells: the ends are coming together. Virchows Archiv Fur Pathologische Anatomie Und Physiologie Und Fur Klinische Medizin, 2002, 440, 573-582.	2.8	26
52	Anchorage-independent multi-cellular spheroids as an in vitro model of growth signaling in Ewing tumors. Oncogene, 2002, 21, 307-318.	5.9	73
53	Alternative lengthening of telomeres is associated with chromosomal instability in osteosarcomas. Oncogene, 2001, 20, 3835-3844.	5.9	156
54	Telomerase Activity and Telomerase Subunits Gene Expression Patterns in Neuroblastoma: A Molecular and Immunohistochemical Study Establishing Prognostic Tools for Fresh-Frozen and Paraffin-Embedded Tissues. Journal of Clinical Oncology, 2000, 18, 2582-2592.	1.6	98

#	Article	IF	CITATIONS
55	Nitrogen-induced changes in morphological development and bacterial susceptibility of Belgian endive (Cichorium intybus L.) are genotype-dependent. Planta, 1999, 209, 389-398.	3.2	17