Teresa Nieves-Chinchilla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7451544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A1.	5.1	514
2	Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. Solar Physics, 2018, 293, 1.	2.5	115
3	THE FIRST OBSERVATION OF A RAPIDLY ROTATING CORONAL MASS EJECTION IN THE MIDDLE CORONA. Astrophysical Journal Letters, 2011, 733, L23.	8.3	98
4	Elliptical cross-section model for the magnetic topology of magnetic clouds. Geophysical Research Letters, 2002, 29, 15-1.	4.0	87
5	Remote and in situ observations of an unusual Earthâ€directed coronal mass ejection from multiple viewpoints. Journal of Geophysical Research, 2012, 117, .	3.3	86
6	MESSENGER observations of a fluxâ€ŧransferâ€event shower at Mercury. Journal of Geophysical Research, 2012, 117, .	3.3	85
7	Magnetic Field Configuration Models and Reconstruction Methods for Interplanetary Coronal Mass Ejections. Solar Physics, 2013, 284, 129-149.	2.5	69
8	A CIRCULAR-CYLINDRICAL FLUX-ROPE ANALYTICAL MODEL FOR MAGNETIC CLOUDS. Astrophysical Journal, 2016, 823, 27.	4.5	67
9	The Solar Orbiter Science Activity Plan. Astronomy and Astrophysics, 2020, 642, A3.	5.1	67
10	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 1. Initial architecture. Space Weather, 2015, 13, 374-385.	3.7	65
11	Modeling observations of solar coronal mass ejections with heliospheric imagers verified with the Heliophysics System Observatory. Space Weather, 2017, 15, 955-970.	3.7	65
12	THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS. Astrophysical Journal, 2016, 817, 14.	4.5	63
13	A STEREO Survey of Magnetic Cloud Coronal Mass Ejections Observed at Earth in 2008–2012. Astrophysical Journal, Supplement Series, 2017, 229, 29.	7.7	60
14	Solar wind electron distribution functions inside magnetic clouds. Journal of Geophysical Research, 2008, 113, .	3.3	59
15	Plasma and Magnetic Field Inside Magnetic Clouds: a Global Study. Solar Physics, 2002, 207, 187-198.	2.5	53
16	Models and data analysis tools for the Solar Orbiter mission. Astronomy and Astrophysics, 2020, 642, A2.	5.1	53
17	A Quarter Century of <i>Wind</i> Spacecraft Discoveries. Reviews of Geophysics, 2021, 59, e2020RG000714.	23.0	52
18	Multispacecraft recovery of a magnetic cloud and its origin from magnetic reconnection on the Sun. Journal of Geophysical Research, 2009, 114, .	3.3	51

#	Article	IF	CITATIONS
19	INNER HELIOSPHERIC EVOLUTION OF A "STEALTH―CME DERIVED FROM MULTI-VIEW IMAGING AND MULTIPOINT IN SITU OBSERVATIONS. I. PROPAGATION TO 1 AU. Astrophysical Journal, 2013, 779, 55.	4.5	48
20	On the Spatial Coherence of Magnetic Ejecta: Measurements of Coronal Mass Ejections by Multiple Spacecraft Longitudinally Separated by 0.01 au. Astrophysical Journal Letters, 2018, 864, L7.	8.3	47
21	Elliptic-cylindrical Analytical Flux Rope Model for Magnetic Clouds. Astrophysical Journal, 2018, 861, 139.	4.5	47
22	Unraveling the Internal Magnetic Field Structure of the Earth-directed Interplanetary Coronal Mass Ejections During 1995 – 2015. Solar Physics, 2019, 294, 1.	2.5	44
23	The Heliospheric Current Sheet and Plasma Sheet during Parker Solar Probe's First Orbit. Astrophysical Journal Letters, 2020, 894, L19.	8.3	39
24	Understanding the origins of the heliosphere: integrating observations and measurements from Parker Solar Probe, Solar Orbiter, and other space- and ground-based observatories. Astronomy and Astrophysics, 2020, 642, A4.	5.1	35
25	Solar Energetic Particles Produced by a Slow Coronal Mass Ejection at â^1⁄40.25 au. Astrophysical Journal, Supplement Series, 2020, 246, 29.	7.7	35
26	Analysis of the Internal Structure of the Streamer Blowout Observed by the Parker Solar Probe During the First Solar Encounter. Astrophysical Journal, Supplement Series, 2020, 246, 63.	7.7	34
27	A GLOBAL MAGNETIC TOPOLOGY MODEL FOR MAGNETIC CLOUDS. I Astrophysical Journal, 2012, 748, 109.	4.5	32
28	Magnetic Clouds Observed at 1 Au During the Period 2000–2003. Solar Physics, 2005, 232, 105-126.	2.5	31
29	Source and Propagation of a Streamer Blowout Coronal Mass Ejection Observed by the Parker Solar Probe. Astrophysical Journal, Supplement Series, 2020, 246, 69.	7.7	29
30	Predicting the magnetic vectors within coronal mass ejections arriving at Earth: 2. Geomagnetic response. Space Weather, 2017, 15, 441-461.	3.7	24
31	Whistler Waves Driven by Anisotropic Strahl Velocity Distributions: Cluster Observations. AIP Conference Proceedings, 2010, , .	0.4	18
32	Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections. Solar Physics, 2018, 293, 1.	2.5	18
33	CME Magnetic Structure and IMF Preconditioning Affecting SEP Transport. Space Weather, 2021, 19, e2020SW002654.	3.7	18
34	Modeling Interplanetary Expansion and Deformation of CMEs With ANTEATRâ€PARADE: Relative Contribution of Different Forces. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028911.	2.4	16
35	Magnetic Structure and Propagation of Two Interacting CMEs From the Sun to Saturn. Journal of Geophysical Research: Space Physics, 2021, 126,	2.4	16
36	Tracking the momentum flux of a CME and quantifying its influence on geomagnetically induced currents at Earth. Space Weather, 2013, 11, 245-261.	3.7	15

#	Article	IF	CITATIONS
37	The unusual widespread solar energetic particle event on 2013 August 19. Astronomy and Astrophysics, 2021, 653, A137.	5.1	15
38	The Streamer Blowout Origin of a Flux Rope and Energetic Particle Event Observed by Parker Solar Probe at 0.5 au. Astrophysical Journal, 2020, 897, 134.	4.5	14
39	Direct First Parker Solar Probe Observation of the Interaction of Two Successive Interplanetary Coronal Mass Ejections in 2020 November. Astrophysical Journal, 2022, 930, 88.	4.5	14
40	Europe's next mission to the Sun. Nature Astronomy, 2020, 4, 205-205.	10.1	13
41	Prediction of shock arrival times from CME and flare data. Space Weather, 2016, 14, 544-562.	3.7	12
42	Comparative Analysis of the 2020 November 29 Solar Energetic Particle Event Observed by Parker Solar Probe. Astrophysical Journal, 2021, 920, 123.	4.5	12
43	Analysis and study of the in situ observation of the June 1st 2008 CME by STEREO. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1348-1360.	1.6	11
44	Identifying Flux Rope Signatures Using a Deep Neural Network. Solar Physics, 2020, 295, 1.	2.5	11
45	Modern Faraday Rotation Studies to Probe the Solar Wind. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	11
46	Evolution of Coronal Mass Ejection Properties in the Inner Heliosphere: Prediction for the Solar Orbiter and Parker Solar Probe. Astrophysical Journal, 2019, 884, 179.	4.5	9
47	Analysis of the Helical Kink Stability of Differently Twisted Magnetic Flux Ropes. Solar Physics, 2020, 295, 1.	2.5	9
48	Evidence of a complex structure within the 2013 August 19 coronal mass ejection. Astronomy and Astrophysics, 2022, 662, A45.	5.1	9
49	FIDOâ€SIT: The First Forward Model for the In Situ Magnetic Field of CMEâ€Driven Sheaths. Journal of Geophysical Research: Space Physics, 2020, 125, e2019JA027423.	2.4	8
50	On the Flux-Rope Topology of Ejecta Observed in the Period 1997 – 2006. Solar Physics, 2013, 284, 1	5 2. \$66.	7
51	Modeling Interplanetary Expansion and Deformation of Coronal Mass Ejections With ANTEATRâ€₽ARADE: Sensitivity to Input Parameters. Journal of Geophysical Research: Space Physics, 2021, 126, e2020JA028966.	2.4	7
52	The Grad–Shafranov Reconstruction of Toroidal Magnetic Flux Ropes: First Applications. Solar Physics, 2017, 292, 1.	2.5	6
53	Small Satellite Mission Concepts for Space Weather Research and as Pathfinders for Operations. Space Weather, 2022, 20, e2020SW002554.	3.7	6
54	Magnetic Field Profiles Within Magnetic Clouds: A Model-Approach. Earth, Moon and Planets, 2009, 104, 109-113.	0.6	5

Teresa Nieves-Chinchilla

#	Article	IF	CITATIONS
55	Modeling Heliospheric Flux Ropes: A Comparative Study of Physical Quantities. IEEE Transactions on Plasma Science, 2018, 46, 2370-2377.	1.3	5
56	Identification of Flux Rope Orientation via Neural Networks. Frontiers in Astronomy and Space Sciences, 2022, 9, .	2.8	5
57	On the relationship between magnetic clouds and the great geomagnetic storms associated with the period 1995–2006. Journal of Atmospheric and Solar-Terrestrial Physics, 2011, 73, 1372-1379.	1.6	4
58	Predicting well-connected SEP events from observations of solar EUVs and energetic protons. Journal of Space Weather and Space Climate, 2019, 9, A27.	3.3	4
59	Inferences About the Magnetic Field Structure of a CME with Both In Situ and Faraday Rotation Constraints. Astrophysical Journal, 2020, 896, 99.	4.5	4
60	International Coordination and Support for SmallSatâ€Enabled Space Weather Activities. Space Weather, 2020, 18, e2020SW002568.	3.7	2
61	Interplanetary Magnetic Flux Rope Observed at Ground Level by HAWC. Astrophysical Journal, 2020, 905, 73.	4.5	2
62	On Modeling ICME Cross-Sections as Static MHD Columns. Solar Physics, 2022, 297, .	2.5	2
63	The relationship between the recovery phase of geomagnetic storms and the magnetic clouds. Advances in Space Research, 2005, 35, 426-428.	2.6	1
64	Understanding the Internal Magnetic Field Configurations of ICMEs Using More than 20 Years of Wind Observations. , 2018, , 27-57.		1
65	Resolving the Ambiguity of a Magnetic Cloud's Orientation Caused by Minimum Variance Analysis Comparing it with a Force-Free Model. Solar Physics, 2021, 296, 1.	2.5	1
66	Fitting and Reconstruction of Thirteen Simple Coronal Mass Ejections. , 2018, , 565-575.		0
67	Editorial: Towards Future Research on Space Weather Drivers. Solar Physics, 2021, 296, 1.	2.5	0