Wouter J C De Bruijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7451297/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unravelling discolouration caused by iron-flavonoid interactions: Complexation, oxidation, and formation of networks. Food Chemistry, 2022, 370, 131292.	8.2	21
2	Facile Amidation of Non-Protected Hydroxycinnamic Acids for the Synthesis of Natural Phenol Amides. Molecules, 2022, 27, 2203.	3.8	8
3	Design and characterization of Ca-Fe(III) pyrophosphate salts with tunable pH-dependent solubility for dual-fortification of foods. Journal of Functional Foods, 2022, 92, 105066.	3.4	2
4	Tea phenolics as prebiotics. Trends in Food Science and Technology, 2022, 127, 156-168.	15.1	12
5	Microbial Metabolism of Theaflavin-3,3â€2-digallate and Its Gut Microbiota Composition Modulatory Effects. Journal of Agricultural and Food Chemistry, 2021, 69, 232-245.	5.2	40
6	Insights in the Recalcitrance of Theasinensin A to Human Gut Microbial Degradation. Journal of Agricultural and Food Chemistry, 2021, 69, 2477-2484.	5.2	7
7	Toward a Systematic Nomenclature for (Neo)Lignanamides. Journal of Natural Products, 2021, 84, 956-963.	3.0	8
8	A targeted prenylation analysis by a combination of IT-MS and HR-MS: Identification of prenyl number, configuration, and position in different subclasses of (iso)flavonoids. Analytica Chimica Acta, 2021, 1180, 338874.	5.4	5
9	A comparison of the phenolic composition of old and young tea leaves reveals a decrease in flavanols and phenolic acids and an increase in flavonols upon tea leaf maturation. Journal of Food Composition and Analysis, 2020, 86, 103385.	3.9	55
10	Browning of Epicatechin (EC) and Epigallocatechin (EGC) by Auto-Oxidation. Journal of Agricultural and Food Chemistry, 2020, 68, 13879-13887.	5.2	35
11	Reciprocal Interactions between Epigallocatechin-3-gallate (EGCG) and Human Gut Microbiota <i>In Vitro</i> . Journal of Agricultural and Food Chemistry, 2020, 68, 9804-9815.	5.2	56
12	Induction of promising antibacterial prenylated isoflavonoids from different subclasses by sequential elicitation of soybean. Phytochemistry, 2020, 179, 112496.	2.9	7
13	Revealing the main factors and two-way interactions contributing to food discolouration caused by iron-catechol complexation. Scientific Reports, 2020, 10, 8288.	3.3	42
14	Enhanced biosynthesis of the natural antimicrobial glyceollins in soybean seedlings by priming and elicitation. Food Chemistry, 2020, 317, 126389.	8.2	8
15	Plant Aromatic Prenyltransferases: Tools for Microbial Cell Factories. Trends in Biotechnology, 2020, 38, 917-934.	9.3	43
16	Toward Developing a Yeast Cell Factory for the Production of Prenylated Flavonoids. Journal of Agricultural and Food Chemistry, 2019, 67, 13478-13486.	5.2	45
17	Mass spectrometric characterisation of avenanthramides and enhancing their production by germination of oat (Avena sativa). Food Chemistry, 2019, 277, 682-690.	8.2	34
18	QSAR of 1,4-benzoxazin-3-one antimicrobials and their drug design perspectives. Bioorganic and Medicinal Chemistry, 2018, 26, 6105-6114.	3.0	9

Wouter J C De Bruijn

#	Article	IF	CITATIONS
19	Antibacterial prenylated stilbenoids from peanut (Arachis hypogaea). Phytochemistry Letters, 2018, 28, 13-18.	1.2	22
20	Structure and biosynthesis of benzoxazinoids: Plant defence metabolites with potential as antimicrobial scaffolds. Phytochemistry, 2018, 155, 233-243.	2.9	54
21	Mass Spectrometric Characterization of Benzoxazinoid Glycosides from <i>Rhizopus</i> -Elicited Wheat (<i>Triticum aestivum</i>) Seedlings. Journal of Agricultural and Food Chemistry, 2016, 64, 6267-6276.	5.2	27
22	Fatty acids attached to all-trans-astaxanthin alter its cis–trans equilibrium, and consequently its stability, upon light-accelerated autoxidation. Food Chemistry, 2016, 194, 1108-1115.	8.2	31
23	Analysis of Palmitoyl Apo-astaxanthinals, Apo-astaxanthinones, and their Epoxides by UHPLC-PDA-ESI-MS. Journal of Agricultural and Food Chemistry, 2014, 62, 10254-10263.	5.2	15
24	Carbohydrate utilization and metabolism is highly differentiated in Agaricus bisporus. BMC Genomics, 2013, 14, 663.	2.8	35