Masaaki Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7451065/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	GPR55 regulates the responsiveness to, but does not dimerise with, α1A-adrenoceptors. Biochemical Pharmacology, 2021, 188, 114560.	4.4	0
2	The metabolic effects of mirabegron are mediated primarily by β 3 â€adrenoceptors. Pharmacology Research and Perspectives, 2020, 8, e00643.	2.4	9
3	BRL37344 stimulates GLUT4 translocation and glucose uptake in skeletal muscle via β ₂ -adrenoceptors without causing classical receptor desensitization. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2019, 316, R666-R677.	1.8	16
4	Adrenoceptor regulation of the mechanistic target of rapamycin in muscle and adipose tissue. British Journal of Pharmacology, 2019, 176, 2433-2448.	5.4	9
5	The PPARÎ ³ agonist rosiglitazone promotes the induction of brite adipocytes, increasing β-adrenoceptor-mediated mitochondrial function and glucose uptake. Cellular Signalling, 2018, 42, 54-66.	3.6	38
6	$\hat{l}\pm$ 1A -Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes. Biochemical Pharmacology, 2018, 148, 27-40.	4.4	20
7	Rosiglitazone and a β3-Adrenoceptor Agonist Are Both Required for Functional Browning of White Adipocytes in Culture. Frontiers in Endocrinology, 2018, 9, 249.	3.5	25
8	α _{1A} -adrenoceptor stimulation promotes glucose uptake and cell survival in cardiomyocytes - role of mTOR. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-2-28.	0.0	0
9	Metabolic effects of mirabegron in mice: implications for use in diabetes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-5-25.	0.0	Ο
10	Factors influencing biased agonism in recombinant cells expressing the human α _{1A} â€adrenoceptor. British Journal of Pharmacology, 2017, 174, 2318-2333.	5.4	24
11	Adrenoceptors promote glucose uptake into adipocytes and muscle by an insulin-independent signaling pathway involving mechanistic target of rapamycin complex 2. Pharmacological Research, 2017, 116, 87-92.	7.1	30
12	Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Molecular Nutrition and Food Research, 2016, 60, 18-42.	3.3	39
13	Response to Comment on Sato et al. Improving Type 2 Diabetes Through a Distinct Adrenergic Signaling Pathway Involving mTORC2 That Mediates Glucose Uptake in Skeletal Muscle. Diabetes 2014;63:4115–4129. Diabetes, 2014, 63, e22-e23.	0.6	7
14	Improving Type 2 Diabetes Through a Distinct Adrenergic Signaling Pathway Involving mTORC2 That Mediates Glucose Uptake in Skeletal Muscle. Diabetes, 2014, 63, 4115-4129.	0.6	101
15	Glucose uptake in brown fat cells is dependent on mTOR complex 2–promoted GLUT1 translocation. Journal of Cell Biology, 2014, 207, 365-374.	5.2	138
16	Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse β3-Adrenoceptor. Journal of Biological Chemistry, 2012, 287, 20674-20688.	3.4	23
17	β ₂ â€Adrenoceptors increase translocation of GLUT4 via GPCR kinase sites in the receptor Câ€terminal tail. British Journal of Pharmacology, 2012, 165, 1442-1456.	5.4	25
18	Ligandâ€directed signalling at βâ€adrenoceptors. British Journal of Pharmacology, 2010, 159, 1022-1038.	5.4	141

#	ARTICLE	IF	CITATIONS
19	4-[[(Hexylamino)carbonyl]amino]-N-[4-[2-[[(2S)-2-hydroxy-3-(4-hydroxyphenoxy)propyl]amino]ethyl]-b (L755507) and Antagonist (S)-N-[4-[2-[[3-[3-(Acetamidomethyl)phenoxy]-2-hydroxypropyl]amino]-ethyl]phenyl]benzenesulfonamide (L748337) Activate Different Signaling Pathways in Chinese Hamster Ovary-K1 Cells Stably Expressing	enzenesul 2.3	fonamide 47
20	Ligand-Directed Signaling at the β ₃ -Adrenoceptor Produced by 3-(2-Ethylphenoxy)-1-[(1, <i>S</i>)-1,2,3,4-tetrahydronapth-1-ylamino]-2 <i>S</i> -2-propanol oxalate (SR59230A) Relative to Receptor Agonists. Molecular Pharmacology, 2007, 72, 1359-1368.	2.3	80
21	Functional Domains of the Mouse β3-Adrenoceptor Associated with Differential G Protein Coupling. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1354-1361.	2.5	25