
Antal A Koos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450836/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Indium Nitride at the 2D Limit. Advanced Materials, 2021, 33, e2006660.	11.1	45
2	Janus Structured Multiwalled Carbon Nanotube Forests for Simple Asymmetric Surface Functionalization and Patterning at the Nanoscale. ACS Applied Nano Materials, 2020, 3, 7554-7562.	2.4	2
3	Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. Npj 2D Materials and Applications, 2019, 3, .	3.9	45
4	Influence of Native Defects on the Electronic and Magnetic Properties of CVD Grown MoSe ₂ Single Layers. Journal of Physical Chemistry C, 2019, 123, 24855-24864.	1.5	22
5	Dynamic strain in gold nanoparticle supported graphene induced by focused laser irradiation. Nanoscale, 2018, 10, 13417-13425.	2.8	3
6	Time dependent decomposition of ammonia borane for the controlled production of 2D hexagonal boron nitride. Scientific Reports, 2017, 7, 14297.	1.6	31
7	Targeted removal of copper foil surface impurities for improved synthesis of CVD graphene. Carbon, 2017, 122, 207-216.	5.4	43
8	Direct visualization of electrical transport-induced alloy formation and composition changes in filled multi-wall carbon nanotubes by in situ scanning transmission electron microscopy. Journal of Alloys and Compounds, 2017, 721, 501-505.	2.8	2
9	STM study of the MoS2 flakes grown on graphite: A model system for atomically clean 2D heterostructure interfaces. Carbon, 2016, 105, 408-415.	5.4	29
10	Metal-free chemical vapor deposition growth of graphitic tubular structures on engineered perovskite oxide substrates. Carbon, 2016, 99, 591-598.	5.4	4
11	Morphology – composition correlations in carbon nanotubes synthesised with nitrogen and phosphorus containing precursors. Physical Chemistry Chemical Physics, 2015, 17, 2137-2142.	1.3	6
12	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: III. Towards upscaling. Carbon, 2015, 88, 148-156.	5.4	33
13	Ceramic composites from mesoporous silica coated multi-wall carbonÂnanotubes. Microporous and Mesoporous Materials, 2015, 217, 159-166.	2.2	18
14	Rapid epitaxy-free graphene synthesis on silicidated polycrystalline platinum. Nature Communications, 2015, 6, 7536.	5.8	46
15	Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Physical Chemistry Chemical Physics, 2015, 17, 23741-23747.	1.3	61
16	Stiffness, strength and interwall sliding in aligned and continuous multi-walled carbon nanotube/glass composite microcantilevers. Acta Materialia, 2015, 100, 118-125.	3.8	9
17	WS ₂ 2D nanosheets in 3D nanoflowers. Chemical Communications, 2014, 50, 12360-12362.	2.2	26
18	Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection. Carbon, 2014, 66, 662-673.	5.4	139

#	Article	IF	CITATIONS
19	Effects of temperature and ammonia flow rate on the chemical vapour deposition growth of nitrogen-doped graphene. Physical Chemistry Chemical Physics, 2014, 16, 19446.	1.3	21
20	A Graphene Surface Force Balance. Langmuir, 2014, 30, 11485-11492.	1.6	21
21	Probing the Bonding in Nitrogen-Doped Graphene Using Electron Energy Loss Spectroscopy. ACS Nano, 2013, 7, 7145-7150.	7.3	69
22	In situ engineering of NanoBud geometries. Chemical Communications, 2013, 49, 10956.	2.2	15
23	Controlled growth of Ni nanocrystals on SrTiO3 and their application in the catalytic synthesis of carbon nanotubes. Chemical Communications, 2013, 49, 3748.	2.2	18
24	Flame spray pyrolysis generated transition metal oxide nanoparticles as catalysts for the growth of carbon nanotubes. RSC Advances, 2013, 3, 20040.	1.7	6
25	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: II. An analytical study. Carbon, 2013, 58, 159-169.	5.4	37
26	Aerosol-assisted chemical vapour deposition synthesis of multi-wall carbon nanotubes: I. Mapping the reactor. Carbon, 2013, 58, 151-158.	5.4	36
27	Synthesis of carbon nanocoil forests on BaSrTiO3 substrates with the aid of a Sn catalyst. Carbon, 2013, 60, 5-15.	5.4	12
28	Controlling the Orientation, Edge Geometry, and Thickness of Chemical Vapor Deposition Graphene. ACS Nano, 2013, 7, 1351-1359.	7.3	182
29	Customised transition metal oxide nanoparticles for the controlled production of carbon nanostructures. RSC Advances, 2012, 2, 3748.	1.7	7
30	Boron-Mediated Nanotube Morphologies. ACS Nano, 2012, 6, 7800-7805.	7.3	20
31	Polarized light microscopy of chemical-vapor-deposition-grown graphene on copper. Applied Physics Letters, 2012, 100, 213103.	1.5	9
32	Tailoring gas sensing properties of multi-walled carbon nanotubes by in situ modification with Si, P, and N. Carbon, 2012, 50, 2816-2823.	5.4	39
33	Tuning the magnetic properties of iron-filled carbon nanotubes. Carbon, 2012, 50, 3674-3681.	5.4	57
34	N-SWCNTs production by aerosol-assisted CVD method. Chemical Physics Letters, 2012, 538, 108-111.	1.2	16
35	Investigating the Structural, Electronic, and Chemical Evolution of B-Doped Multi-walled Carbon Nanotubes as a Result of Joule Heating. Journal of Physical Chemistry C, 2011, 115, 25019-25022.	1.5	10
36	Facile, fast, and inexpensive synthesis of monodisperse amorphous Nickel-Phosphide nanoparticles of predefined size. Chemical Communications, 2011, 47, 4108.	2.2	31

#	Article	IF	CITATIONS
37	Currentâ€Induced Restructuring and Chemical Modification of Nâ€Doped Multiâ€walled Carbon Nanotubes. Advanced Functional Materials, 2011, 21, 3933-3937.	7.8	10
38	Carbon Nanotubes: Current-Induced Restructuring and Chemical Modification of N-Doped Multi-walled Carbon Nanotubes (Adv. Funct. Mater. 20/2011). Advanced Functional Materials, 2011, 21, 3932-3932.	7.8	0
39	Reactive deposition epitaxy growth of iron silicide nanoparticles on Si(001). Energy Procedia, 2011, 3, 35-41.	1.8	0
40	Stable Dispersions of Nitrogen Containing Multi-Walled Carbon Nanotubes. Materials Express, 2011, 1, 201-209.	0.2	7
41	Processing and properties of aligned multi-walled carbon nanotube/aluminoborosilicate glass composites made by sol–gel processing. Carbon, 2010, 48, 2212-2217.	5.4	36
42	Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon, 2010, 48, 3033-3041.	5.4	111
43	Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon, 2009, 47, 30-37.	5.4	127
44	Spray deposited fluoropolymer/multi-walled carbon nanotube composite films with high dielectric permittivity at low percolation threshold. Carbon, 2009, 47, 561-569.	5.4	68
45	Scanning Tunneling Microscopy and Spectroscopy of Nitrogen Doped Multi-Walled Carbon Nanotubes Produced by the Pyrolysis of Ferrocene and Benzylamine. Journal of Nanoscience and Nanotechnology, 2009, 9, 6139-6143.	0.9	7
46	The role of defects in chemical sensing properties of carbon nanotube films. Applied Physics A: Materials Science and Processing, 2008, 93, 495-504.	1.1	18
47	Complex dielectric function of ion implantation amorphized SiC determined by spectroscopic ellipsometry. Physica Status Solidi C: Current Topics in Solid State Physics, 2008, 5, 1374-1377.	0.8	2
48	Photonic band gap materials in butterfly scales: A possible source of "blueprints― Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2008, 149, 259-265.	1.7	39
49	Oxidation of SiC investigated by ellipsometry and Rutherford backscattering spectrometry. Journal of Applied Physics, 2008, 104, 014903.	1.1	23
50	Formation of Ge Nanocrystals in SiO ₂ by Electron Beam Evaporation. Journal of Nanoscience and Nanotechnology, 2008, 8, 818-822.	0.9	12
51	Focused ion beam based sputtering yield measurements on ZnO and Mo thin films. Superlattices and Microstructures, 2007, 42, 392-397.	1.4	6
52	STM imaging of carbon nanotube point defects. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 1825-1829.	0.8	9
53	FORMATION OF Ge NANOCRYSTALS BY ELECTRON BEAM EVAPORATION. , 2007, , .		0
54	INFLUENCE OF CATALYST AND CARBON SOURCE ON THE SYNTHESIS OF CARBON NANOTUBES IN A SEMI-CONTINUOUS INJECTION CHEMICAL VAPOR DEPOSITION METHOD. , 2006, , 53-54.		1

#	Article	IF	CITATIONS
55	Carbon Nanotubes - Towards Artificial Nose Implementation. , 2006, , .		Ο
56	Inexpensive, upscalable nanotube growth methods. Current Applied Physics, 2006, 6, 135-140.	1.1	40
57	Apparent diameter of carbon nanotubes in scanning tunnelling microscopy measurements. Journal of Physics Condensed Matter, 2006, 18, 5793-5805.	0.7	11
58	Multiwall Carbon Nanotubes Produced by Underwater Electric Arc. , 2005, , 1-7.		0
59	Diameter and morphology dependence on experimental conditions of carbon nanotube arrays grown by spray pyrolysis. Carbon, 2005, 43, 970-977.	5.4	56
60	Structure and spectroscopic properties of C–Ni and CNx–Ni nanocomposite films. Journal of Applied Physics, 2005, 98, 034313.	1.1	15
61	Regularly Curved Carbon Nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2005, 13, 523-533.	1.0	3
62	Thickness dependent aggregation of Fe–silicide islands on Si substrate. Thin Solid Films, 2004, 459, 48-52.	0.8	17
63	Carbon nanotube Y junctions: growth and properties. Diamond and Related Materials, 2004, 13, 241-249.	1.8	69
64	STM investigation of carbon nanotubes connected by functional groups. Materials Science and Engineering C, 2003, 23, 1007-1011.	3.8	31
65	Synthesis and characterization of new polyaniline/nanotube composites. Materials Science and Engineering C, 2003, 23, 87-91.	3.8	105
66	STM and AFM investigation of coiled carbon nanotubes produced by laser evaporation of fullerene. Materials Science and Engineering C, 2003, 23, 275-278.	3.8	17
67	STM observation of asymmetrical Y-branched carbon nanotubes and nano-knees produced by the arc discharge method. Materials Science and Engineering C, 2003, 23, 561-564.	3.8	14
68	Interface broadening due to Ar+ ion bombardment measured on Co/Cu multilayer at grazing angle of incidence. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2003, 21, 553-557.	0.9	12
69	STM investigation of carbon nanotubes completely covered with functional groups. , 2003, , .		Ο
70	Synthesis procedures for production of carbon nanotube junctions. , 2003, , .		4
71	Coiled carbon nanotube structures with supraunitary nonhexagonal to hexagonal ring ratio. Physical Review B, 2002, 66, .	1.1	69
72	Interconnecting Carbon Nanotubes with an Inorganic Metal Complex. Journal of the American Chemical Society, 2002, 124, 13694-13695.	6.6	116

#	Article	IF	CITATIONS
73	From straight carbon nanotubes to Y-branched and coiled carbon nanotubes. Diamond and Related Materials, 2002, 11, 1081-1085.	1.8	29
74	Calculation of the charge spreading along a carbon nanotube seen in scanning tunnelling microscopy (STM). Diamond and Related Materials, 2002, 11, 961-963.	1.8	3
75	Room temperature growth of single-wall coiled carbon nanotubes and Y-branches. Materials Science and Engineering C, 2002, 19, 3-7.	3.8	31
76	Catalyst traces and other impurities in chemically purified carbon nanotubes grown by CVD. Materials Science and Engineering C, 2002, 19, 9-13.	3.8	45
77	Large scale production of short functionalized carbon nanotubes. Chemical Physics Letters, 2002, 360, 429-435.	1.2	176
78	Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy (STM). Chemical Physics Letters, 2002, 365, 338-342.	1.2	26
79	Charge spreading effects during 3D tunneling through a supported carbon nanotube. AIP Conference Proceedings, 2001, , .	0.3	1