## Toshiyuki Takayanagi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450827/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                                                                | IF               | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 1  | Reduced dimensionality calculations of quantum reactive scattering for the H+CH4→H2+CH3 reaction.<br>Journal of Chemical Physics, 1996, 104, 2237-2242.                                                                                                                                                                                                                                                | 1.2              | 97        |
| 2  | Three-dimensional quantum reactive scattering calculations for the nonadiabatic (D+H2)+ reaction system. Journal of Chemical Physics, 2000, 112, 2615-2622.                                                                                                                                                                                                                                            | 1.2              | 60        |
| 3  | van der Waals resonances in cumulative reaction probabilities for the F+H2, D2, and HD reactions.<br>Journal of Chemical Physics, 1998, 109, 8929-8934.                                                                                                                                                                                                                                                | 1.2              | 51        |
| 4  | Quantum scattering calculations for the electronically nonadiabatic Br(2P1/2)+H2→HBr+H reaction.<br>Journal of Chemical Physics, 2000, 113, 7158-7164.                                                                                                                                                                                                                                                 | 1.2              | 40        |
| 5  | Nonadiabatic quantum reactive scattering calculations for the O(1D)+H2, D2, and HD reactions on the lowest three potential energy surfaces. Journal of Chemical Physics, 2002, 116, 2439-2446.                                                                                                                                                                                                         | 1.2              | 35        |
| 6  | Photodissociation of Cl2 in helium clusters: an application of hybrid method of quantum wavepacket dynamics and path integral centroid molecular dynamics. Chemical Physics Letters, 2003, 372, 90-96.                                                                                                                                                                                                 | 1.2              | 34        |
| 7  | Dynamics of dipole- and valence bound anions in iodide-adenine binary complexes: A time-resolved photoelectron imaging and quantum mechanical investigation. Journal of Chemical Physics, 2015, 143, 104308.                                                                                                                                                                                           | 1.2              | 32        |
| 8  | Theoretical study on photoexcitation dynamics of the K atom attached to helium clusters and the solvation structures of K*Hen exciplexes. Physical Chemistry Chemical Physics, 2004, 6, 3241.                                                                                                                                                                                                          | 1.3              | 31        |
| 9  | Kinetic measurements for the reactions of ozone with crotonaldehyde and its methyl derivatives and calculations of transition-state theoryElectronic supplementary information (ESI) available: The stationary-point geometries optimized at B3LYP/6-31G(d,p) for the reactions of ozone with nine unsaturated carbonyls. See http://www.rsc.org/suppdata/cp/b4/b402496f/. Physical Chemistry Chemical | 1.3              | 31        |
| 10 | Physics, 2004, 6, 3069.<br>Translational energy distributions of the products of the 193 and 157 nm photodissociation of<br>chloroethylenes. Journal of Chemical Physics, 1997, 106, 10123-10133.                                                                                                                                                                                                      | 1.2              | 30        |
| 11 | Accurate ab initio electronic structure calculations of the stable helium complex: HeBeO. Chemical<br>Physics Letters, 2008, 454, 1-6.                                                                                                                                                                                                                                                                 | 1.2              | 28        |
| 12 | Theoretical Study on the Mechanism of Low-Energy Dissociative Electron Attachment for Uracil.<br>Journal of Physical Chemistry A, 2009, 113, 4795-4801.                                                                                                                                                                                                                                                | 1.1              | 27        |
| 13 | Globalab initiopotential energy surfaces for the lowest three doublet states (1 2A′, 2 2A′, and 1 2<br>BrH2 system. Journal of Chemical Physics, 2003, 119, 7838-7856.                                                                                                                                                                                                                                 | A″) of tł<br>1.2 | 1e<br>26  |
| 14 | Theoretical simulations on photoexcitation dynamics of the silver atom embedded in helium clusters.<br>Journal of Chemical Physics, 2003, 119, 5478-5486.                                                                                                                                                                                                                                              | 1.2              | 24        |
| 15 | Electron accommodation dynamics in the DNA base thymine. Journal of Chemical Physics, 2015, 143, 024312.                                                                                                                                                                                                                                                                                               | 1.2              | 24        |
| 16 | Theoretical study of an isotope effect on rate constants for the CH3+H2→CH4+H and CD3+H2→CD3H+H<br>reactions using variational transition state theory and the multidimensional semiclassical tunneling<br>method. Journal of Chemical Physics, 1999, 110, 10830-10842.                                                                                                                                | 1.2              | 20        |
| 17 | Quantum Dynamics Study on the Product Branching for the C(3P) + C2H2Reaction:Âcyclic-C3H<br>versuslinear-C3Hâ€. Journal of Physical Chemistry A, 2006, 110, 361-366.                                                                                                                                                                                                                                   | 1.1              | 20        |
| 18 | Theoretical study of the H+Br2 and Mu+Br2 reactions: A new ab initio potential energy surface and quantum dynamics calculations. Chemical Physics, 2007, 334, 109-116.                                                                                                                                                                                                                                 | 0.9              | 20        |

Τοςηιγικι Τακαγανασι

| #  | Article                                                                                                                                                                                         | IF               | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|
| 19 | The photodissociation dynamics of dichloroethenes at 214 and 220 nm. Journal of Chemical Physics, 1993, 99, 1703-1709.                                                                          | 1.2              | 19        |
| 20 | Theoretical study of kinetic isotope effects on rate constants for the H2+C2H→H+C2H2 reaction and its isotopic variants. Journal of Chemical Physics, 2000, 113, 4060-4072.                     | 1.2              | 19        |
| 21 | An ab initio molecular orbital study of even-membered hydrogen cluster cations: H6+, H8+, H10+, H<br>and H14+. Journal of Chemical Physics, 1998, 109, 4327-4334.                               | 12+,<br>1.2'     | 18        |
| 22 | Automated reaction path searches for spinâ€forbidden reactions. Journal of Computational Chemistry, 2018, 39, 1319-1326.                                                                        | 1.5              | 18        |
| 23 | Ab initio study of small acetonitrile cluster anions. Journal of Chemical Physics, 2005, 122, 244307.                                                                                           | 1.2              | 17        |
| 24 | Photodissociation Dynamics of 1-Bromo-1-chloro-2,2,2-trifluoroethane at 157 nm. Journal of Physical Chemistry A, 1997, 101, 6647-6652.                                                          | 1.1              | 15        |
| 25 | Dynamical Calculations of Charge-Transfer-to-Solvent Excited States of Small I-(CH3CN)nClusters.<br>Journal of Physical Chemistry A, 2006, 110, 7011-7018.                                      | 1.1              | 15        |
| 26 | Dynamical calculations for the H+para, orthoâ€H2 reactions at low temperatures: Effect of rotational energy of reagent H2 molecule. Journal of Chemical Physics, 1991, 95, 4154-4159.           | 1.2              | 14        |
| 27 | Preferential C–Cl bond rupture from 1â€bromoâ€2â€chloroâ€1,1,2â€trifluoroethane following photoabsorptior via n(Cl)→Ïf*(C–Cl) transition. Journal of Chemical Physics, 1995, 103, 1710-1713.    | <sup>1</sup> 1.2 | 12        |
| 28 | Theoretical study of the non-Arrhenius temperature dependence of thermal rate constants for the<br>H+H2S→H2+SH reaction. Journal of Chemical Physics, 1999, 111, 10529-10536.                   | 1.2              | 12        |
| 29 | Path-integral molecular dynamics simulations of BeO embedded in helium clusters: Formation of the stable HeBeO complex. Chemical Physics, 2008, 354, 38-43.                                     | 0.9              | 12        |
| 30 | Positron binding to hydrocarbon molecules: calculation using the positron–electron correlation polarization potential. European Physical Journal D, 2019, 73, 1.                                | 0.6              | 12        |
| 31 | Automated reaction path search calculations of spin-inversion mechanisms in the 6,4,2Nb + C2H4 reaction. Computational and Theoretical Chemistry, 2019, 1155, 31-37.                            | 1.1              | 12        |
| 32 | Positron–electron correlationâ€polarization potential model for positron binding in polyatomic molecules. Journal of Computational Chemistry, 2020, 41, 1576-1585.                              | 1.5              | 12        |
| 33 | Spinâ€inversion mechanisms in O 2 binding to a model heme complex revisited by density function theory calculations. Journal of Computational Chemistry, 2020, 41, 1130-1138.                   | 1.5              | 12        |
| 34 | COMPUTATIONAL METHODS FOR POLYATOMIC BIMOLECULAR REACTIONS. , 1998, , 1-33.                                                                                                                     |                  | 11        |
| 35 | Theoretical calculations of the prereaction process of the H-···HD van der Waals molecule. Physical Chemistry Chemical Physics, 2000, 2, 665-670.                                               | 1.3              | 11        |
| 36 | Theoretical analysis of the transition-state spectrum of the cyclooctatetraene unimolecular reaction: Three degree-of-freedom model calculations. Chemical Physics Letters, 2015, 634, 134-139. | 1.2              | 11        |

Т

| #  | Article                                                                                                                                                                                                                                                                                                              | IF               | CITATIONS   |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 37 | From photoelectron detachment spectra of BrHBrâ^', BrDBrâ^' and IHIâ^', IDIâ^' to vibrational bonding of<br>BrMuBr and IMul. Journal of Chemical Physics, 2015, 142, 164308.                                                                                                                                         | 1.2              | 11          |
| 38 | On the ionâ€pair dissociation mechanisms in the small NaCl·(H 2 O) 6 cluster: A perspective from reaction path search calculations. Journal of Computational Chemistry, 2018, 39, 1835-1842.                                                                                                                         | 1.5              | 11          |
| 39 | Path integral molecular dynamics combined with discrete-variable-representation approach: the effect of solvation structures on vibrational spectra of Cl2 in helium clusters. Chemical Physics Letters, 2002, 362, 504-510.                                                                                         | 1.2              | 10          |
|    | Spinâ€inversion mechanisms in the reactions of transition metal cations (Sc <sup>+</sup> ,) Tj ETQq0 0 0 rgBT /Ov                                                                                                                                                                                                    | verlock 10       | Tf 50 632 1 |
| 40 | reaction path search calculations. International Journal of Ouantum Chemistry, 2019, 119, e25908.                                                                                                                                                                                                                    | 1.0              | 10          |
| 41 | Ab initio calculations for the N(2D) + CH4 reaction: Does the N(2D) atom really insert into CH bonds of alkane molecules?. International Journal of Quantum Chemistry, 2000, 79, 190-197.                                                                                                                            | 1.0              | 9           |
| 42 | Synthesis and Some Properties of Bis(ruthenocenyl)thiophene Derivatives – Possible Spin-Coupling in<br>the Two-Electron Oxidized Species of Dinuclear Ruthenocenes Bridged by Thiophene Derivatives.<br>European Journal of Inorganic Chemistry, 2006, 2006, 4577-4588.                                              | 1.0              | 9           |
| 43 | Computational Analysis of Two-State Reactivity in β-Hydride Elimination Mechanisms of Fe(II)– and<br>Co(II)–Alkyl Complexes Supported by β-Diketiminate Ligand. Organometallics, 2019, 38, 3582-3589.                                                                                                                | 1.1              | 9           |
| 44 | A quantum reactive scattering study of the spin-forbidden CH(X 2Î)+N2(X 1Σg+)→HCN(X 1Σ+)+N(4S)<br>Journal of Chemical Physics, 2002, 116, 7065-7072.                                                                                                                                                                 | reaction.<br>1.2 | 8           |
| 45 | DEVELOPMENT OF A THREE-DIMENSIONAL AB INITIO POTENTIAL ENERGY SURFACE FOR THE He–Cl2(X)<br>SYSTEM AND ITS APPLICATION TO SOLVATION STRUCTURES IN THE HenCl2 CLUSTERS. Journal of<br>Theoretical and Computational Chemistry, 2005, 04, 197-207.                                                                      | 1.8              | 8           |
| 46 | Photoexcited Ag ejection from a low-temperature He cluster: a simulation study by nonadiabatic<br>Ehrenfest ring-polymer molecular dynamics. Physical Chemistry Chemical Physics, 2017, 19, 13798-13806.                                                                                                             | 1.3              | 8           |
| 47 | Construction of global ab initio potential energy surfaces for the HNS system and quantum dynamics<br>calculations for the S(3P)+NH(X3Σ)→NS(X2Î)+H(2S) and N(4S)+SH(X2Î)→NS(X2Î)+H(2S) reactions. Chemical<br>Physics, 2014, 439, 63-70.                                                                             | 0.9              | 7           |
| 48 | First-principles simulations of transition state spectra of the I + HI and I + DI reactions and vibrational bonding in IMuI. Chemical Physics, 2015, 457, 51-56.                                                                                                                                                     | 0.9              | 7           |
| 49 | Ab Initio Molecular Orbital Study of the N(2D) + HCN(1Σ) Reaction. Journal of Physical Chemistry A,<br>1999, 103, 9323-9329.                                                                                                                                                                                         | 1.1              | 6           |
| 50 | Photodissociation dynamics of CBrClF2 at 157.6 nm. I. Experimental study using photofragment translational spectroscopy. Journal of Chemical Physics, 2001, 114, 1617-1623.                                                                                                                                          | 1.2              | 6           |
| 51 | Ring-Polymer Molecular Dynamics Calculations of Thermal Rate Coefficients and Branching Ratios for<br>the Interstellar H <sub>3</sub> <sup>+</sup> + CO â†' H <sub>2</sub> +<br>HCO <sup>+</sup> /HOC <sup>+</sup> Reaction and Its Deuterated Analogue. Journal of Physical<br>Chemistry A. 2021. 125. 10750-10756. | 1.1              | 6           |
| 52 | Spin-orbit branching in the collision-induced dissociation reaction of<br>He(1S0)+HF(X 1I£0+)→He(1S0)+H(2S1/2)+F(2P3/2,1/2). Journal of Chemical Physics, 2001, 115, 6385-6393.                                                                                                                                      | 1.2              | 5           |
| 53 | Semiclassical dynamics of electron attachment to guanine–cytosine base pair. Chemical Physics<br>Letters, 2015, 625, 174-178.                                                                                                                                                                                        | 1.2              | 5           |
| 54 | Reduction of OH vibrational frequencies in amino acids by positron attachment. Journal of Computational Chemistry, 2018, 39, 2060-2066.                                                                                                                                                                              | 1.5              | 5           |

| #  | Article                                                                                                                                                                                                                                                                                                | IF                | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|
| 55 | Quantum Simulation Verifies the Stability of an 18â€Coordinated Actinium–Helium Complex. Chemistry -<br>A European Journal, 2018, 24, 12716-12721.                                                                                                                                                     | 1.7               | 5         |
| 56 | Hydration Effect on Positron Binding Ability of Proline: Positron Attachment Induces<br>Proton-Transfer To Form Zwitterionic Structure. Journal of Physical Chemistry A, 2019, 123, 1217-1224.                                                                                                         | 1.1               | 5         |
| 57 | Quantum dynamics calculation of the annihilation spectrum for positron–proline scattering.<br>Computational and Theoretical Chemistry, 2019, 1147, 1-7.                                                                                                                                                | 1.1               | 5         |
| 58 | Positron binding in chloroethenes: Modeling positron-electron correlation-polarization potentials for molecular calculations. Physical Review A, 2020, 102, .                                                                                                                                          | 1.0               | 5         |
| 59 | Reduced-Dimensionality Quantum Dynamics Study of the 3Fe(CO)4 + H2 → 1FeH2(CO)4 Spin-inversion<br>Reaction. Molecules, 2020, 25, 882.                                                                                                                                                                  | 1.7               | 5         |
| 60 | Nuclear Quantum Effects in H <sub>2</sub> Adsorption Dynamics on a Small Water Cluster Studied with Ring-Polymer Molecular Dynamics Simulations. ACS Earth and Space Chemistry, 2022, 6, 1390-1396.                                                                                                    | 1.2               | 5         |
| 61 | Tunneling in the H2S+O(3P)→HS+OH reaction: A theoretical study. Journal of Chemical Physics, 1996, 104,<br>1953-1957.                                                                                                                                                                                  | 1.2               | 4         |
| 62 | Ab initio prediction of vibrational states of the HeCuF helium-containing complex. Chemical Physics Letters, 2012, 539-540, 15-18.                                                                                                                                                                     | 1.2               | 4         |
| 63 | Franck–Condon simulations of transition-state spectra for the OH + H <sub>2</sub> O and OD + D <sub>2</sub> O reactions. Physical Chemistry Chemical Physics, 2020, 22, 20685-20692.                                                                                                                   | 1.3               | 4         |
| 64 | Application of Reaction Path Search Calculations to Potential Energy Surface Fits. Journal of Physical Chemistry A, 2021, 125, 3994-4002.                                                                                                                                                              | 1.1               | 4         |
| 65 | Two-state reactivity in the acetylene cyclotrimerization reaction catalyzed by a single atomic transition-metal ion: The case for V+ and Fe+. Computational and Theoretical Chemistry, 2022, 1211, 113682.                                                                                             | 1.1               | 4         |
| 66 | Real wave packet and flux analysis studies of the H + F <sub>2</sub> → HF + F reaction. International<br>Journal of Quantum Chemistry, 2012, 112, 2348-2354.                                                                                                                                           | 1.0               | 3         |
| 67 | The effects of water microsolvation on the C 2 O 4 â^ ↔ CO 2 ·CO 2 â^ core switching reaction:<br>Perspective from exploration of pathways on the potential energy surfaces of small [(CO 2 ) 2 (H 2 O)<br>n ] âr ( n = 1 and 2) clusters. Computational and Theoretical Chemistry, 2017, 1105, 61-68. | 1.1               | 3         |
| 68 | Quantum dynamics calculations for e+ + LiH → Li+ + [Hâ^'; e+] dissociative positron attachmer<br>pseudopotential model. Computational and Theoretical Chemistry, 2018, 1123, 135-141.                                                                                                                  | it using a<br>1.1 | 3         |
| 69 | SN1 reaction mechanisms of tert-butyl chloride in aqueous solution: What can be learned from reaction path search calculations and trajectory calculations for small hydrated clusters?. Computational and Theoretical Chemistry, 2021, 1201, 113278.                                                  | 1.1               | 3         |
| 70 | Nonadiabatic relaxation dynamics of water anion cluster and its isotope effects by ring-polymer molecular dynamics simulation. International Journal of Quantum Chemistry, 2014, 114, 636-641.                                                                                                         | 1.0               | 2         |
| 71 | Nonadiabatic quantum dynamics calculations of transition state spectroscopy of I + HI and I + DI reactions: the existence of long life vibrational bonding resonances. Physical Chemistry Chemical Physics, 2017, 19, 29125-29133.                                                                     | 1.3               | 2         |
| 72 | Nuclear quantum effects in the direct ionization process of pure helium clusters: path-integral and ring-polymer molecular dynamics simulations on the diatomics-in-molecule potential energy surfaces. Physical Chemistry Chemical Physics, 2018, 20, 26489-26499.                                    | 1.3               | 2         |

Τοςηιγικι Τακαγανάςι

| #  | Article                                                                                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Theoretical calculations of photoelectron spectrum of (Au–CO2)Ⱂ anion. Computational and<br>Theoretical Chemistry, 2018, 1140, 56-62.                                                                                                                                                                                      | 1.1 | 2         |
| 74 | Theoretical calculation of positron annihilation spectrum using positronâ€electron<br>correlationâ€polarization potential. International Journal of Quantum Chemistry, 2020, 120, e26376.                                                                                                                                  | 1.0 | 2         |
| 75 | Spinâ€inversion mechanisms in O 2 binding to a model heme compound: A perspective from nonadiabatic wave packet calculations. Journal of Computational Chemistry, 2020, 41, 2527-2537.                                                                                                                                     | 1.5 | 2         |
| 76 | Quantum calculations of the photoelectron spectra of the OHⴴ·NH3 anion: implications for OH + NH3 →<br>H2O + NH2 reaction dynamics. Physical Chemistry Chemical Physics, 2021, 23, 6950-6958.                                                                                                                              | 1.3 | 2         |
| 77 | New Perspectives in Muonium Chemical Reactions. Journal of Computer Chemistry Japan, 2016, 15, 119-123.                                                                                                                                                                                                                    | 0.0 | 2         |
| 78 | Metastable dissociation of multiphoton-ionized xenon clusters. Rapid Communications in Mass Spectrometry, 1991, 5, 303-306.                                                                                                                                                                                                | 0.7 | 1         |
| 79 | Fundamental peak disappears upon binding of a noble gas: a case of the vibrational spectrum of PtCO in<br>an argon matrix. Physical Chemistry Chemical Physics, 2018, 20, 3296-3302.                                                                                                                                       | 1.3 | 1         |
| 80 | Theoretical Analysis of the Formylmethylene Anion Photoelectron Spectrum: Importance of Wolff Rearrangement Dynamics. Journal of Physical Chemistry A, 2020, 124, 9721-9728.                                                                                                                                               | 1.1 | 1         |
| 81 | Quantum dynamics analysis of transition-state spectrum for the SH + H2S → H2S + SH reaction. Physical<br>Chemistry Chemical Physics, 2020, 22, 19845-19854.                                                                                                                                                                | 1.3 | 1         |
| 82 | Theoretical study of the dissociative photodetachment dynamics of the hydrated superoxide anion cluster. Physical Chemistry Chemical Physics, 2021, 23, 16958-16965.                                                                                                                                                       | 1.3 | 1         |
| 83 | On-the-Fly Ring-Polymer Molecular Dynamics Calculations of the Dissociative Photodetachment<br>Process of the Oxalate Anion. Molecules, 2021, 26, 7250.                                                                                                                                                                    | 1.7 | 1         |
| 84 | Contribution of vibrational overtone excitations to positron annihilation rates for benzene and naphthalene. Physical Review A, 2021, 104, .                                                                                                                                                                               | 1.0 | 1         |
| 85 | Ionization dynamics of Ne-doped helium clusters at low temperature: Ring-polymer molecular<br>dynamics simulations including electronically nonadiabatic transitions. Computational and<br>Theoretical Chemistry, 2019, 1163, 112537.                                                                                      | 1.1 | Ο         |
| 86 | Theoretical Study on the Spectroscopic Observation of Intersystem Crossing between<br><sup>3</sup> B <sub>1</sub> and <sup>1</sup> A <sub>1</sub> States of GeH <sub>2</sub> Using the<br>GeH <sub>2</sub> <sup>â€"</sup> ( <sup>2</sup> B <sub>1</sub> ) Anion. Journal of Physical Chemistry A,<br>2019, 123, 5734-5740. | 1.1 | 0         |
| 87 | An Invitation to Muon and Muonium Chemistry Research. Journal of Computer Chemistry Japan, 2020, 19, 51-56.                                                                                                                                                                                                                | 0.0 | 0         |