
Martina Seiffert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/74508/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Exosomes released by chronic lymphocytic leukemia cells induce the transition of stromal cells into cancer-associated fibroblasts. Blood, 2015, 126, 1106-1117.	0.6	399
2	Human Signal-Regulatory Protein Is Expressed on Normal, But Not on Subsets of Leukemic Myeloid Cells and Mediates Cellular Adhesion Involving Its Counterreceptor CD47. Blood, 1999, 94, 3633-3643.	0.6	259
3	IL4I1 Is a Metabolic Immune Checkpoint that Activates the AHR and Promotes Tumor Progression. Cell, 2020, 182, 1252-1270.e34.	13.5	259
4	Tumor-derived exosomes modulate PD-L1 expression in monocytes. Science Immunology, 2017, 2, .	5.6	236
5	miRNA-130a Targets <i>ATG2B</i> and <i>DICER1</i> to Inhibit Autophagy and Trigger Killing of Chronic Lymphocytic Leukemia Cells. Cancer Research, 2012, 72, 1763-1772.	0.4	185
6	Signal-regulatory protein α (SIRPα) but not SIRPβ is involved in T-cell activation, binds to CD47 with high affinity, and is expressed on immature CD34+CD38â~'hematopoietic cells. Blood, 2001, 97, 2741-2749.	0.6	164
7	Cutting Edge: Signal-Regulatory Protein β1 Is a DAP12-Associated Activating Receptor Expressed in Myeloid Cells. Journal of Immunology, 2000, 164, 9-12.	0.4	158
8	PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood, 2015, 126, 203-211.	0.6	158
9	The basophil activation marker defined by antibody 97A6 is identical to the ectonucleotide pyrophosphatase/phosphodiesterase 3. Blood, 2001, 97, 3303-3305.	0.6	134
10	Depletion of CLL-associated patrolling monocytes and macrophages controls disease development and repairs immune dysfunction in vivo. Leukemia, 2016, 30, 570-579.	3.3	102
11	BRAF inhibition in hairy cell leukemia with low-dose vemurafenib. Blood, 2016, 127, 2847-2855.	0.6	100
12	Dissecting intratumour heterogeneity of nodal B-cell lymphomas at the transcriptional, genetic and drug-response levels. Nature Cell Biology, 2020, 22, 896-906.	4.6	93
13	Gab3, a New DOS/Gab Family Member, Facilitates Macrophage Differentiation. Molecular and Cellular Biology, 2002, 22, 231-244.	1.1	81
14	Inflammatory cytokines and signaling pathways are associated with survival of primary chronic lymphocytic leukemia cells in vitro: a dominant role of CCL2. Haematologica, 2011, 96, 408-416.	1.7	80
15	AC133 Antigen Expression Is Not Restricted to Acute Myeloid Leukemia Blasts But Is Also Found on Acute Lymphoid Leukemia Blasts and on a Subset of CD34+ B-Cell Precursors. Blood, 1999, 94, 832-833.	0.6	75
16	Branchedâ€chain ketoacids secreted by glioblastoma cells via <scp>MCT</scp> 1 modulate macrophage phenotype. EMBO Reports, 2017, 18, 2172-2185.	2.0	74
17	Efficient nucleofection of primary human B cells and B-CLL cells induces apoptosis, which depends on the microenvironment and on the structure of transfected nucleic acids. Leukemia, 2007, 21, 1977-1983.	3.3	71
18	T-cells in chronic lymphocytic leukemia: Guardians or drivers of disease?. Leukemia, 2020, 34, 2012-2024.	3.3	70

#	Article	IF	CITATIONS
19	Expression of Novel Surface Antigens on Early Hematopoietic Cellsa. Annals of the New York Academy of Sciences, 1999, 872, 25-39.	1.8	60
20	Soluble CD14 is a novel monocyte-derived survival factor for chronic lymphocytic leukemia cells, which is induced by CLL cells in vitro and present at abnormally high levels in vivo. Blood, 2010, 116, 4223-4230.	0.6	60
21	Chaetoglobosin A preferentially induces apoptosis in chronic lymphocytic leukemia cells by targeting the cytoskeleton. Leukemia, 2014, 28, 1289-1298.	3.3	59
22	Interleukin-10 receptor signaling promotes the maintenance of a PD-1int TCF-1+ CD8+ TÂcell population that sustains anti-tumor immunity. Immunity, 2021, 54, 2825-2841.e10.	6.6	57
23	Control of chronic lymphocytic leukemia development by clonally-expanded CD8+ T-cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia, 2019, 33, 625-637.	3.3	55
24	IGF1R as druggable target mediating PI3K-δ inhibitor resistance in a murine model of chronic lymphocytic leukemia. Blood, 2019, 134, 534-547.	0.6	51
25	PI3Kδ inhibition modulates regulatory and effector T-cell differentiation and function in chronic lymphocytic leukemia. Leukemia, 2019, 33, 1427-1438.	3.3	51
26	Gab3 -Deficient Mice Exhibit Normal Development and Hematopoiesis and Are Immunocompetent. Molecular and Cellular Biology, 2003, 23, 2415-2424.	1.1	48
27	Mitogenic and adhesive effects of tenascin-C on human hematopoietic cells are mediated by various functional domains. Matrix Biology, 1998, 17, 47-63.	1.5	47
28	Lenalidomide reduces survival of chronic lymphocytic leukemia cells in primary cocultures by altering the myeloid microenvironment. Blood, 2013, 121, 2503-2511.	0.6	41
29	Bio-Activity and Dereplication-Based Discovery of Ophiobolins and Other Fungal Secondary Metabolites Targeting Leukemia Cells. Molecules, 2013, 18, 14629-14650.	1.7	41
30	Gene knockdown studies revealed CCDC50 as a candidate gene in mantle cell lymphoma and chronic lymphocytic leukemia. Leukemia, 2009, 23, 2018-2026.	3.3	40
31	CD84 regulates PD-1/PD-L1 expression and function in chronic lymphocytic leukemia. Journal of Clinical Investigation, 2018, 128, 5465-5478.	3.9	37
32	Human Signal-Regulatory Protein Is Expressed on Normal, But Not on Subsets of Leukemic Myeloid Cells and Mediates Cellular Adhesion Involving Its Counterreceptor CD47. Blood, 1999, 94, 3633-3643.	0.6	36
33	Exploiting biological diversity and genomic aberrations in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2012, 53, 1023-1031.	0.6	34
34	Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP. RNA Biology, 2013, 10, 1017-1029.	1.5	33
35	Targeting IRAK4 disrupts inflammatory pathways and delays tumor development in chronic lymphocytic leukemia. Leukemia, 2020, 34, 100-114.	3.3	31
36	Chronic Lymphocytic Leukemia-Derived Extracellular Vesicles Contain a Distinctive Proteome, As Well As Specific Micro RNAs and Y RNAs. Blood, 2014, 124, 1968-1968.	0.6	28

#	Article	IF	CITATIONS
37	EOMES and IL-10 regulate antitumor activity of T regulatory type 1 CD4+ T cells in chronic lymphocytic leukemia. Leukemia, 2021, 35, 2311-2324.	3.3	27
38	Tumor necrosis factor receptor signaling is a driver of chronic lymphocytic leukemia that can be therapeutically targeted by the flavonoid wogonin. Haematologica, 2018, 103, 688-697.	1.7	26
39	Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in Em-TCL1 mice. Haematologica, 2021, 106, 968-977.	1.7	26
40	EOMES is essential for antitumor activity of CD8+ T cells in chronic lymphocytic leukemia. Leukemia, 2021, 35, 3152-3162.	3.3	26
41	Beyond bystanders: Myeloid cells in chronic lymphocytic leukemia. Molecular Immunology, 2019, 110, 77-87.	1.0	24
42	TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target. Blood, 2021, 137, 3064-3078.	0.6	20
43	CD8 ⁺ T-cells of CLL-bearing mice acquire a transcriptional program of T-cell activation and exhaustion. Leukemia and Lymphoma, 2020, 61, 351-356.	0.6	17
44	Optimized Protocol for Isolation of Small Extracellular Vesicles from Human and Murine Lymphoid Tissues. International Journal of Molecular Sciences, 2020, 21, 5586.	1.8	16
45	Evaluation of vecabrutinib as a model for noncovalent BTK/ITK inhibition for treatment of chronic lymphocytic leukemia. Blood, 2022, 139, 859-875.	0.6	16
46	Extracellular vesicles in chronic lymphocytic leukemia. Leukemia and Lymphoma, 2013, 54, 1826-1830.	0.6	15
47	CD4+ T cells, but not non-classical monocytes, are dispensable for the development of chronic lymphocytic leukemia in the TCL1-tg murine model. Leukemia, 2016, 30, 1409-1413.	3.3	15
48	Methylome-based cell-of-origin modeling (Methyl-COOM) identifies aberrant expression of immune regulatory molecules in CLL. Genome Medicine, 2020, 12, 29.	3.6	15
49	Antiapoptotic function of charged multivesicular body protein 5: A potentially relevant gene in acute myeloid leukemia. International Journal of Cancer, 2011, 128, 2865-2871.	2.3	13
50	Phosphoinositide 3-Kinase Signaling in the Tumor Microenvironment: What Do We Need to Consider When Treating Chronic Lymphocytic Leukemia With PI3K Inhibitors?. Frontiers in Immunology, 2020, 11, 595818.	2.2	13
51	Rejection of adoptively transferred Eµ-TCL1 chronic lymphocytic leukemia cells in C57BL/6 substrains or knockout mouse lines. Leukemia, 2019, 33, 1514-1539.	3.3	12
52	Isolation, Structural Analyses and Biological Activity Assays against Chronic Lymphocytic Leukemia of Two Novel Cytochalasins — Sclerotionigrin A and B. Molecules, 2014, 19, 9786-9797.	1.7	11
53	TBETâ€expressing Th1 CD4 ⁺ T cells accumulate in chronic lymphocytic leukaemia without affecting disease progression in Eµâ€TCL1 mice. British Journal of Haematology, 2020, 189, 133-145.	1.2	11
54	Clonal evolution in chronic lymphocytic leukemia is scant in relapsed but accelerated in refractory cases after chemo(immune) therapy. Haematologica, 2022, 107, 604-614.	1.7	11

#	Article	IF	CITATIONS
55	Increased Bâ€cell activity with consumption of activated monocytes in severe COVIDâ€19 patients. European Journal of Immunology, 2021, 51, 1449-1460.	1.6	10
56	IDO1-Targeted Therapy Does Not Control Disease Development in the Eµ-TCL1 Mouse Model of Chronic Lymphocytic Leukemia. Cancers, 2021, 13, 1899.	1.7	9
5 7	An autologous culture model of nodal B-cell lymphoma identifies ex vivo determinants of response to bispecific antibodies. Blood Advances, 2021, 5, 5060-5071.	2.5	9
58	Selective BTK inhibition improves bendamustine therapy response and normalizes immune effector functions in chronic lymphocytic leukemia. International Journal of Cancer, 2019, 144, 2762-2773.	2.3	8
59	Lenalidomide, an antiproliferative CLL drug. Blood, 2014, 124, 1545-1546.	0.6	6
60	Proteomic and bioinformatic profiling of neutrophils in CLL reveals functional defects that predispose to bacterial infections. Blood Advances, 2021, 5, 1259-1272.	2.5	6
61	Autoantigen-Harboring Apoptotic Cells Hijack the Coinhibitory Pathway of T Cell Activation. Scientific Reports, 2018, 8, 10533.	1.6	5
62	Dissecting the Prognostic Significance and Functional Role of Progranulin in Chronic Lymphocytic Leukemia. Cancers, 2019, 11, 822.	1.7	5
63	HIF-1α: a potential treatment target in chronic lymphocytic leukemia. Haematologica, 2020, 105, 856-858.	1.7	5
64	Characterization and functional analysis of laminin isoforms in human bone marrow. Blood, 2000, 96, 4194-4203.	0.6	5
65	Longitudinal analyses of CLL in mice identify leukemia-related clonal changes including a Myc gain predicting poor outcome in patients. Leukemia, 2021, , .	3.3	3
66	Checkpoint inhibition in the bone marrow. Nature Biomedical Engineering, 2018, 2, 793-794.	11.6	2
67	Chronic Lymphocytic Leukemia-Exosomes Switch Endothelial and Mesenchymal Stromal Cells into Cancer-Associated Fibroblasts to Sustain Leukemic Cell Survival. Blood, 2014, 124, 2927-2927.	0.6	2
68	AC133 Antigen Expression Is Not Restricted to Acute Myeloid Leukemia Blasts But Is Also Found on Acute Lymphoid Leukemia Blasts and on a Subset of CD34+ B-Cell Precursors. Blood, 1999, 94, 832-833.	0.6	2
69	Antibody Peptides as Cancer Vaccine—Turning Weapons to Targets. Clinical Cancer Research, 2021, 27, 659-661.	3.2	1
70	MicroRNA-130a Targets ATG2B, AGO4 and DICER1, Inhibits Autophagy and Induces Cell Death in Chronic Lymphocytic Leukemia. Blood, 2011, 118, 1768-1768.	0.6	1
71	CLL Exosome-Derived Y RNA hY4 Induces TLR7/8-Mediated Inflammation and PD-L1 Expression in Monocytes. Blood, 2016, 128, 3217-3217.	0.6	1
72	The Toll-Like Receptor-Like Molecule CD180 and Soluble CD14 Transmit Survival Signals in B-Cell Chronic Lymphocytic Leukemia Cells Presumably by Acting As Co-Receptors,. Blood, 2011, 118, 3883-3883.	0.6	0

#	Article	IF	CITATIONS
73	Fungal natural products targeting chronic lymphocytic leukemia. Planta Medica, 2012, 78, .	0.7	0
74	Lenalidomide Reduces Survival of Chronic Lymphocytic Leukemia Cells in Primary Co-Cultures by Altering the Myeloid Microenvironment. Blood, 2012, 120, 3894-3894.	0.6	0
75	Systematic Mapping Of Drug and Pathway Sensitivity In Chronic Lymphocytic Leukemia Identifies Synthetic Lethal Interactions Of Mutant p53. Blood, 2013, 122, 173-173.	0.6	0
76	Microenvironmental Factors and The Role Of Tumor Necrosis Factor Receptor Type 1 (TNFR-1) In Chronic Lymphocytic Leukemia. Blood, 2013, 122, 4149-4149.	0.6	0
77	Abstract 5557: Systematic mapping of drug sensitivity in hematological malignancies identifies vulnerability of chronic lymphocytic leukemia with mutant p53. , 2014, , .		0
78	Targeting Dysfunctional Myeloid Cells Delays Disease Development and Improves Immune Function in a CLL Mouse Model. Blood, 2014, 124, 3298-3298.	0.6	0
79	The Flavonoid Wogonin Reduces CLL Cell Survival in Vitro and Leukemia Development in Eµ-TCL1 Mice By Targeting Aberrant TNF Receptor Signaling. Blood, 2014, 124, 1966-1966.	0.6	0
80	Immune Checkpoint Blockade with Anti-PD-L1 Prevents Immune Dysfuntion and CLL Development in the TCL1 Adoptive Transfer Mouse Model. Blood, 2014, 124, 717-717.	0.6	0
81	Abstract A30: Chronic lymphocytic leukemia-derived extracellular vesicles mediate NFkB signaling and pro-inflammatory cytokine release in monocytes. , 2016, , .		0
82	Abstract LB-083: Targeting IRAK4 disrupts inflammatory pathways and tumor microenvironment in chronic lymphocytic leukemia regardless MYD88 mutational status. , 2018, , .		0
83	Targeting IRAK4 Disrupts Inflammatory Pathways and Delays Tumor Development in Chronic Lymphocytic Leukemia. Blood, 2018, 132, 2650-2650.	0.6	0
84	Clonal Evolution in Chronic Lymphocytic Leukemia is Scant in Relapsed But Accelerated in Refractory Cases. SSRN Electronic Journal, 0, , .	0.4	0
85	Eomes and IL-10 Regulate Anti-Tumor Activity of T Cells in Chronic Lymphocytic Leukemia. Blood, 2019, 134, 4288-4288.	0.6	0
86	Immune Suppression in CLL Is Mediated By the L-Amino Acid Oxidase IL4I1, a Reason for the Treatment Failure of IDO1 Inhibitors. Blood, 2020, 136, 34-34.	0.6	0
87	Editorial: New Insights Into the Complexity of Tumor Immunology in B-Cell Malignancies: Prognostic and Predictive Biomarkers and Therapy. Frontiers in Oncology, 2021, 11, 841763.	1.3	0
88	Editorial: New Insights into the Complexity of Tumor Immunology in B-cell Malignancies: Tumor Immunology and Immunotherapy. Frontiers in Oncology, 2022, 12, 853620.	1.3	0
89	Editorial: New Insights Into the Complexity of Tumor Immunology in B-Cell Malignancies: Disease Biology and Signaling. Frontiers in Oncology, 2021, 11, 820984.	1.3	0