Yimo Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450612/publications.pdf Version: 2024-02-01

ΥΙΜΟ ΗΛΝ

#	Article	IF	CITATIONS
1	High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature, 2015, 520, 656-660.	13.7	1,562
2	Janus monolayers of transition metal dichalcogenides. Nature Nanotechnology, 2017, 12, 744-749.	15.6	1,459
3	Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature, 2017, 550, 229-233.	13.7	442
4	Electron ptychography of 2D materials to deep sub-ångström resolution. Nature, 2018, 559, 343-349.	13.7	431
5	Intrinsic Two-Dimensional Ferroelectricity with Dipole Locking. Physical Review Letters, 2018, 120, 227601.	2.9	322
6	Esaki Diodes in van der Waals Heterojunctions with Broken-Gap Energy Band Alignment. Nano Letters, 2015, 15, 5791-5798.	4.5	319
7	Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst. Nature Nanotechnology, 2022, 17, 759-767.	15.6	318
8	Large-scale chemical assembly of atomically thin transistors and circuits. Nature Nanotechnology, 2016, 11, 954-959.	15.6	251
9	Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science, 2018, 359, 1131-1136.	6.0	247
10	Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nature Nanotechnology, 2018, 13, 152-158.	15.6	206
11	Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano, 2018, 12, 10463-10472.	7.3	203
12	Atomically Thin Ohmic Edge Contacts Between Two-Dimensional Materials. ACS Nano, 2016, 10, 6392-6399.	7.3	202
13	Graphene-based bimorphs for micron-sized, autonomous origami machines. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 466-470.	3.3	144
14	GaN/NbN epitaxial semiconductor/superconductor heterostructures. Nature, 2018, 555, 183-189.	13.7	116
15	Sub-nanometre channels embedded in two-dimensional materials. Nature Materials, 2018, 17, 129-133.	13.3	97
16	Chemical Vapor Deposition Growth of Large Single-Crystal Mono-, Bi-, Tri-Layer Hexagonal Boron Nitride and Their Interlayer Stacking. ACS Nano, 2017, 11, 12057-12066.	7.3	85
17	Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides. Journal of the American Chemical Society, 2018, 140, 12354-12358.	6.6	85
18	High-yield monolayer graphene grids for near-atomic resolution cryoelectron microscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1009-1014.	3.3	84

Υιμο Ηαν

#	Article	IF	CITATIONS
19	Strain Mapping of Two-Dimensional Heterostructures with Subpicometer Precision. Nano Letters, 2018, 18, 3746-3751.	4.5	82
20	Structure and mechanism of human diacylglycerol O-acyltransferaseÂ1. Nature, 2020, 581, 329-332.	13.7	72
21	Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nature Nanotechnology, 2020, 15, 272-276.	15.6	71
22	Mixed-state electron ptychography enables sub-angstrom resolution imaging with picometer precision at low dose. Nature Communications, 2020, 11, 2994.	5.8	63
23	Scaling-up Atomically Thin Coplanar Semiconductor–Metal Circuitry via Phase Engineered Chemical Assembly. Nano Letters, 2019, 19, 6845-6852.	4.5	46
24	Additive manufacturing of patterned 2D semiconductor through recyclable masked growth. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 3437-3442.	3.3	46
25	Characterization of Sulfur and Nanostructured Sulfur Battery Cathodes in Electron Microscopy Without Sublimation Artifacts. Microscopy and Microanalysis, 2017, 23, 155-162.	0.2	40
26	Large Single Crystals of Two-Dimensional π-Conjugated Metal–Organic Frameworks via Biphasic Solution-Solid Growth. ACS Central Science, 2021, 7, 104-109.	5.3	40
27	Metalâ€Guided Selective Growth of 2D Materials: Demonstration of a Bottomâ€Up CMOS Inverter. Advanced Materials, 2019, 31, e1900861.	11.1	36
28	Graphene Oxide Nanosheets Stimulate Ruffling and Shedding of Mammalian Cell Plasma Membranes. CheM, 2016, 1, 273-286.	5.8	30
29	Theory and practice of electron diffraction from single atoms and extended objects using an EMPAD. Microscopy (Oxford, England), 2018, 67, i150-i161.	0.7	29
30	Synthesis of Highâ€Performance Monolayer Molybdenum Disulfide at Low Temperature. Small Methods, 2021, 5, e2000720.	4.6	27
31	Atomic Layer Deposition for Membranes, Metamaterials, and Mechanisms. Advanced Materials, 2019, 31, e1901944.	11.1	24
32	In Situ-Generated Volatile Precursor for CVD Growth of a Semimetallic 2D Dichalcogenide. ACS Applied Materials & Interfaces, 2018, 10, 34401-34408.	4.0	23
33	Realization of Quantum Hall Effect in Chemically Synthesized InSe. Advanced Functional Materials, 2019, 29, 1904032.	7.8	23
34	Tailoring Semiconductor Lateral Multijunctions for Giant Photoconductivity Enhancement. Advanced Materials, 2017, 29, 1703680.	11.1	21
35	Imaging Polarity in Two Dimensional Materials by Breaking Friedel's Law. Ultramicroscopy, 2020, 215, 113019.	0.8	20
36	Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy. Npj Computational Materials, 2022, 8, .	3.5	15

Υιμο Ηαν

#	Article	IF	CITATIONS
37	Atomically Thin Graphene Windows That Enable High Contrast Electron Microscopy without a Specimen Vacuum Chamber. Nano Letters, 2016, 16, 7427-7432.	4.5	13
38	Aberration-corrected STEM imaging of 2D materials: Artifacts and practical applications of threefold astigmatism. Science Advances, 2020, 6, .	4.7	13
39	Electron Microscopy in Air: Transparent Atomic Membranes and Imaging Modes. Microscopy and Microanalysis, 2015, 21, 1111-1112.	0.2	5
40	Strain Accommodation and Coherency in Laterally-Stitched WSe 2 /WS 2 Junctions. Microscopy and Microanalysis, 2016, 22, 870-871.	0.2	5
41	Direct visualization of floppy two-dimensional DNA origami using cryogenic electron microscopy. IScience, 2022, 25, 104373.	1.9	5
42	Electron Diffraction from a Single Atom and Optimal Signal Detection. Microscopy and Microanalysis, 2016, 22, 846-847.	0.2	3
43	Rapid and Semi-Automated Analysis of 4D-STEM data via Unsupervised Learning. Microscopy and Microanalysis, 2021, 27, 58-59.	0.2	3
44	Ultrafast Pump–Probe Microscopy on 2D Transition Metal Dichalcogenides. Advanced Photonics Research, 2022, 3, .	1.7	3
45	Theory and Practice of Diffractometry on Single Tungsten Atoms using Electron Microscope Pixel Array Detectors. Microscopy and Microanalysis, 2017, 23, 444-445.	0.2	2
46	Picometer-Precision Strain Mapping of Two-Dimensional Heterostructures using an Electron Microscope Pixel Array Detector (EMPAD). Microscopy and Microanalysis, 2017, 23, 1712-1713.	0.2	1
47	Breaking Friedel's Law in Polar Two Dimensional Materials. Microscopy and Microanalysis, 2017, 23, 1738-1739.	0.2	1
48	Phase Imaging beyond the Diffraction Limit with Electron Ptychography. Microscopy and Microanalysis, 2019, 25, 6-7.	0.2	1
49	2D Materials: Metalâ€Guided Selective Growth of 2D Materials: Demonstration of a Bottomâ€Up CMOS Inverter (Adv. Mater. 18/2019). Advanced Materials, 2019, 31, 1970132.	11.1	1
50	Photoconductivity: Tailoring Semiconductor Lateral Multijunctions for Giant Photoconductivity Enhancement (Adv. Mater. 41/2017). Advanced Materials, 2017, 29, .	11.1	0
51	Enhanced Resolution from Full-Field Ptychography with an Electron Microscope Pixel Array Detector. Microscopy and Microanalysis, 2017, 23, 438-439.	0.2	0
52	Real-space Demonstration of 0.4 Angstrom Resolution at 80 keV via Electron Ptychography with a High Dynamic Range Pixel Array Detector. Microscopy and Microanalysis, 2018, 24, 194-195.	0.2	0
53	AirSEM: Electron Microscopy in Air, without a Specimen Chamber. Microscopy and Microanalysis, 2018, 24, 342-343.	0.2	0
54	Mapping Strain and Relaxation in 2D Heterojunctions with Sub-picometer Precision. Microscopy and Microanalysis, 2018, 24, 1588-1589.	0.2	0

Υιμο Ηαν

#	Article	IF	CITATIONS
55	Micromechanical Systems: Atomic Layer Deposition for Membranes, Metamaterials, and Mechanisms (Adv. Mater. 29/2019). Advanced Materials, 2019, 31, 1970212.	11.1	0
56	Uncovering Atomic and Nano-scale Deformations in Two-dimensional Lateral Heterojunctions. Microscopy and Microanalysis, 2020, 26, 1630-1631.	0.2	0