Xiangxiu Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/745053/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The FLS2-Associated Kinase BIK1 Directly Phosphorylates the NADPH Oxidase RbohD to Control Plant Immunity. Cell Host and Microbe, 2014, 15, 329-338.	11.0	635
2	Receptor-Like Cytoplasmic Kinases: Central Players in Plant Receptor Kinase–Mediated Signaling. Annual Review of Plant Biology, 2018, 69, 267-299.	18.7	303
3	Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. ELife, 2016, 5, e13568.	6.0	217
4	A Regulatory Module Controlling Homeostasis of a Plant Immune Kinase. Molecular Cell, 2018, 69, 493-504.e6.	9.7	161
5	The Arabidopsis Protein Phosphatase PP2C38 Negatively Regulates the Central Immune Kinase BIK1. PLoS Pathogens, 2016, 12, e1005811.	4.7	113
6	The MAP4 Kinase SIK1 Ensures Robust Extracellular ROS Burst and Antibacterial Immunity in Plants. Cell Host and Microbe, 2018, 24, 379-391.e5.	11.0	95
7	Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Research, 2018, 28, 529-543.	12.0	87
8	A malectinâ€like receptor kinase regulates cell death and patternâ€triggered immunity in soybean. EMBO Reports, 2020, 21, e50442.	4.5	44
9	A <i>Phytophthora capsici</i> RXLR effector targets and inhibits the central immune kinases to suppress plant immunity. New Phytologist, 2021, 232, 264-278.	7.3	24
10	Early signalling mechanisms underlying receptor kinase-mediated immunity in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180310.	4.0	18
11	Phytophthora sojae leucine-rich repeat receptor-like kinases: diverse and essential roles in development and pathogenicity. IScience, 2021, 24, 102725.	4.1	13
12	Rice extraâ€large G proteins play pivotal roles in controlling disease resistance and yieldâ€related traits. New Phytologist, 2022, 234, 607-617.	7.3	8
13	Small RNA trafficking at the forefront of plant–pathogen interactions. F1000Research, 2018, 7, 1633.	1.6	6
14	Comparison of the Distinct, Host-Specific Response of Three Solanaceae Hosts Induced by Phytophthora infestans. International Journal of Molecular Sciences, 2021, 22, 11000.	4.1	6
15	Regulation of plant responses to biotic and abiotic stress by receptor-like cytoplasmic kinases. Stress Biology, 2022, 2, .	3.1	6
16	Functional Diversification Analysis of Soybean Malectin/Malectin-Like Domain-Containing Receptor-Like Kinases in Immunity by Transient Expression Assays. Frontiers in Plant Science, 0, 13, .	3.6	2