Franck Oury

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450397/publications.pdf Version: 2024-02-01

28 papers	3,198 citations	³⁹⁴⁴²¹ 19 h-index	501196 28 g-index
			8
32 all docs	32 docs citations	32 times ranked	3864 citing authors

FDANCK OLIDY

#	Article	IF	CITATIONS
1	Paternally expressed gene 3 (Pw1/Peg3) promotes sexual dimorphism in metabolism and behavior. PLoS Genetics, 2022, 18, e1010003.	3.5	3
2	Mechanisms by which autophagy regulates memory capacity in ageing. Aging Cell, 2020, 19, e13189.	6.7	27
3	Bone and Metabolic Control. , 2020, , 527-539.		0
4	Novel insights into parathyroid hormone: report of The Parathyroid Day in Chronic Kidney Disease. CKJ: Clinical Kidney Journal, 2019, 12, 269-280.	2.9	29
5	Autophagy Is Required for Memory Formation and Reverses Age-Related Memory Decline. Current Biology, 2019, 29, 435-448.e8.	3.9	150
6	Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nature Reviews Endocrinology, 2018, 14, 174-182.	9.6	139
7	Gpr158 mediates osteocalcin's regulation of cognition. Journal of Experimental Medicine, 2017, 214, 2859-2873.	8.5	194
8	Bone-brain crosstalk and potential associated diseases. Hormone Molecular Biology and Clinical Investigation, 2016, 28, 69-83.	0.7	17
9	Bone, brain & beyond. Reviews in Endocrine and Metabolic Disorders, 2015, 16, 99-113.	5.7	18
10	GGCX and VKORC1 inhibit osteocalcin endocrine functions. Journal of Cell Biology, 2015, 208, 761-776.	5.2	58
11	Reciprocal interaction between bone and gonads. Archives of Biochemistry and Biophysics, 2014, 561, 147-153.	3.0	17
12	Regulation of male fertility by the bone-derived hormone osteocalcin. Molecular and Cellular Endocrinology, 2014, 382, 521-526.	3.2	87
13	Energy Homeostasis and Neuronal Regulation of Bone Remodeling. , 2013, , 69-80.		1
14	Maternal and Offspring Pools of Osteocalcin Influence Brain Development and Functions. Cell, 2013, 155, 228-241.	28.9	348
15	From Gonads to Bone, and Back. , 2013, , 123-135.		1
16	Osteocalcin regulates murine and human fertility through a pancreas-bone-testis axis. Journal of Clinical Investigation, 2013, 123, 2421-2433.	8.2	233
17	Biology Without Walls: The Novel Endocrinology of Bone. Annual Review of Physiology, 2012, 74, 87-105.	13.1	115
18	A crosstalk between bone and gonads. Annals of the New York Academy of Sciences, 2012, 1260, 1-7.	3.8	39

FRANCK OURY

#	Article	IF	CITATIONS
19	Endocrine Regulation of Male Fertility by the Skeleton. Cell, 2011, 144, 796-809.	28.9	542
20	Towards a serotonin-dependent leptin roadmap in the brain. Trends in Endocrinology and Metabolism, 2011, 22, 382-387.	7.1	45
21	Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. Journal of Experimental Medicine, 2011, 208, 413-413.	8.5	0
22	Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. Journal of Experimental Medicine, 2011, 208, 41-52.	8.5	78
23	CREB mediates brain serotonin regulation of bone mass through its expression in ventromedial hypothalamic neurons. Genes and Development, 2010, 24, 2330-2342.	5.9	105
24	The Central Regulation of Bone Mass, The First Link between Bone Remodeling and Energy Metabolism. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 4795-4801.	3.6	140
25	Signaling through the M3 Muscarinic Receptor Favors Bone Mass Accrual by Decreasing Sympathetic Activity. Cell Metabolism, 2010, 11, 231-238.	16.2	95
26	A Serotonin-Dependent Mechanism Explains the Leptin Regulation of Bone Mass, Appetite, and Energy Expenditure. Cell, 2009, 138, 976-989.	28.9	565
27	Identification of <i>Lmo1</i> as part of a Hoxâ€dependent regulatory network for hindbrain patterning. Developmental Dynamics, 2007, 236, 2675-2684.	1.8	11
28	Hoxa2- and Rhombomere-Dependent Development of the Mouse Facial Somatosensory Map. Science, 2006, 313, 1408-1413.	12.6	127