
Irina Spacova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selective targeting of skin pathobionts and inflammation with topically applied lactobacilli. Cell Reports Medicine, 2022, 3, 100521.	3.3	20
2	Demonstrating the involvement of an active efflux mechanism in the intestinal absorption of chlorogenic acid and quinic acid using a Caco-2 bidirectional permeability assay. Food and Function, 2021, 12, 417-425.	2.1	22
3	Lactic acid bacteria as probiotics for the nose?. Microbial Biotechnology, 2021, 14, 859-869.	2.0	27
4	The role of lactobacilli in inhibiting skin pathogens. Biochemical Society Transactions, 2021, 49, 617-627.	1.6	23
5	Topical Microbial Therapeutics against Respiratory Viral Infections. Trends in Molecular Medicine, 2021, 27, 538-553.	3.5	20
6	At the Interface of Life and Death: Post-mortem and Other Applications of Vaginal, Skin, and Salivary Microbiome Analysis in Forensics. Frontiers in Microbiology, 2021, 12, 694447.	1.5	4
7	Cotton and Surgical Face Masks in Community Settings: Bacterial Contamination and Face Mask Hygiene. Frontiers in Medicine, 2021, 8, 732047.	1.2	27
8	The nasal mutualist Dolosigranulum pigrum AMBR11 supports homeostasis via multiple mechanisms. IScience, 2021, 24, 102978.	1.9	15
9	Microbial enrichment and storage for metagenomics of vaginal, skin, and saliva samples. IScience, 2021, 24, 103306.	1.9	14
10	Lacticaseibacillus rhamnosus GG inhibits infection of human keratinocytes by Staphylococcus aureus through mechanisms involving cell surface molecules and pH reduction. Beneficial Microbes, 2020, 11, 703-715.	1.0	15
11	Lactobacilli Have a Niche in the Human Nose. Cell Reports, 2020, 31, 107674.	2.9	75
12	<i>Lactobacillus rhamnosus</i> probiotic prevents airway function deterioration and promotes gut microbiome resilience in a murine asthma model. Gut Microbes, 2020, 11, 1729-1744.	4.3	39
13	Future of Probiotics and Prebiotics and the Implications for Early Career Researchers. Frontiers in Microbiology, 2020, 11, 1400.	1.5	30
14	Intranasal administration of probiotic <i>Lactobacillus rhamnosus</i> GG prevents birch pollenâ€induced allergic asthma in a murine model. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 100-110.	2.7	84
15	Exploring human host–microbiome interactions in health and disease—how to not get lost in translation. Genome Biology, 2019, 20, 56.	3.8	12
16	Intranasal probiotic <i>Lactobacillus rhamnosus</i> GG prevents respiratory exacerbation in a mouse model of birch pollen allergic asthma. , 2019, , .		1
17	Expression of fluorescent proteins in <i>Lactobacillus rhamnosus</i> to study host–microbe and microbe–microbe interactions. Microbial Biotechnology, 2018, 11, 317-331.	2.0	18
18	Engineering Lactobacillus rhamnosus GG and GR-1 to express HIV-inhibiting griffithsin. International Journal of Antimicrobial Agents, 2018, 52, 599-607.	1.1	18

IRINA SPACOVA

#	Article	IF	CITATIONS
19	Probiotics against airway allergy: host factors to consider. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	20
20	Probiotics for the airways: Potential to improve epithelial and immune homeostasis. Allergy: European Journal of Allergy and Clinical Immunology, 2018, 73, 1954-1963.	2.7	64
21	EUFOREA Rhinology Research Forum 2016: report of the brainstorming sessions on needs and priorities in rhinitis and rhinosinusitis. Rhinology, 2017, 55, 202-210.	0.7	36
22	The Nasal Mutualist <i>Dolosigranulum pigrum</i> AMBR11 Supports Homeostasis via Multiple Mechanisms. SSRN Electronic Journal, 0, , .	0.4	0
23	Lactobacilli Have a Niche in the Human Nose. SSRN Electronic Journal, 0, , .	0.4	4
24	Spontaneous Riboflavin-Overproducing Limosilactobacillus reuteri for Biofortification of Fermented Foods. Frontiers in Nutrition, 0, 9, .	1.6	14