
Meltem Yanilmaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7450189/publications.pdf Version: 2024-02-01

MELTEM YANII MAZ

#	Article	IF	CITATIONS
1	A Review on Centrifugally Spun Fibers and Their Applications. Polymer Reviews, 2022, 62, 1-64.	5.3	37
2	Recent Developments of Tin (II) Sulfide/Carbon Composites for Achieving High-Performance Lithium Ion Batteries: A Critical Review. Nanomaterials, 2022, 12, 1246.	1.9	8
3	Exploring the Diverse Morphology of Porous Poly(Lactic Acid) Fibers for Developing Long-Term Controlled Antibiotic Delivery Systems. Pharmaceutics, 2022, 14, 1272.	2.0	3
4	High-performance nanostructured bio-based carbon electrodes for energy storage applications. Cellulose, 2021, 28, 5169-5218.	2.4	15
5	The Bacterial Control of Poly (Lactic Acid) Nanofibers Loaded with Plant-Derived Monoterpenoids via Emulsion Electrospinning. Polymers, 2021, 13, 3405.	2.0	7
6	Evaluation of electrospun PVA/SiO ₂ nanofiber separator membranes for lithium-ion batteries. Journal of the Textile Institute, 2020, 111, 447-452.	1.0	23
7	Centrifugally spun porous carbon microfibers as interlayer for Li–S batteries. Journal of Materials Science, 2020, 55, 3538-3548.	1.7	30
8	Polyaniline/MnO2/porous carbon nanofiber electrodes for supercapacitors. Journal of Electroanalytical Chemistry, 2020, 861, 113995.	1.9	77
9	TiO ₂ -decorated porous carbon nanofiber interlayer for Li–S batteries. RSC Advances, 2020, 10, 16570-16575.	1.7	9
10	Flexible polyaniline-carbon nanofiber supercapacitor electrodes. Journal of Energy Storage, 2019, 24, 100766.	3.9	115
11	Effect of the Solvent System on the Morphology and Performance of Nylon 6 Nanofibre Membranes. Fibres and Textiles in Eastern Europe, 2019, 27, 97-101.	0.2	1
12	Nylon 6,6 Nanolif Membranların Mekanik Özelliklerinin İncelenmesi. Tekstil Ve Muhendis, 2018, 25, 286-291.	0.3	2
13	High-strength, thermally stable nylon 6,6 composite nanofiber separators for lithium-ion batteries. Journal of Materials Science, 2017, 52, 5232-5241.	1.7	39
14	Fabrication and electrochemical behavior study of nano-fibrous sodium titanate composite. Materials Letters, 2017, 188, 176-179.	1.3	15
15	Understanding glass fiber membrane used as a novel separator for lithium–sulfur batteries. Journal of Membrane Science, 2016, 504, 89-96.	4.1	152
16	Silica/polyacrylonitrile hybrid nanofiber membrane separators via sol-gel and electrospinning techniques for lithium-ion batteries. Journal of Power Sources, 2016, 313, 205-212.	4.0	141
17	Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. Journal of Materials Science, 2016, 51, 4549-4558.	1.7	8
18	Centrifugally Spun SnO ₂ Microfibers Composed of Interconnected Nanoparticles as the Anode in Sodiumâ€ion Batteries. ChemElectroChem, 2015, 2, 1947-1956.	1.7	25

Meltem Yanılmaz

#	Article	IF	CITATIONS
19	Polymethylmethacrylate/Polyacrylonitrile Membranes via Centrifugal Spinning as Separator in Li-Ion Batteries. Polymers, 2015, 7, 629-643.	2.0	66
20	Lithium-substituted sodium layered transition metal oxide fibers as cathodes for sodium-ion batteries. Energy Storage Materials, 2015, 1, 74-81.	9.5	29
21	SiO2/polyacrylonitrile membranes via centrifugal spinning as a separator for Li-ion batteries. Journal of Power Sources, 2015, 273, 1114-1119.	4.0	85
22	Centrifugal spinning: A novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. Journal of Power Sources, 2015, 273, 502-510.	4.0	72
23	Coaxial electrospun Si/C–C core–shell composite nanofibers as binder-free anodes for lithium-ion batteries. Solid State Ionics, 2014, 258, 67-73.	1.3	37
24	A review: effect of conductive polymers on the conductivities of electrospun mats. Textile Reseach Journal, 2014, 84, 1325-1342.	1.1	62
25	Nanoparticle-on-nanofiber hybrid membrane separators for lithium-ion batteries via combining electrospraying and electrospinning techniques. Journal of Membrane Science, 2014, 456, 57-65.	4.1	180
26	Carbon-Confined PVA-Derived Silicon/Silica/Carbon Nanofiber Composites as Anode for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2014, 161, A2197-A2203.	1.3	42
27	Free-standing polyaniline–porous carbon nanofiber electrodes for symmetric and asymmetric supercapacitors. RSC Advances, 2014, 4, 59427-59435.	1.7	53
28	A review of recent developments in membrane separators for rechargeable lithium-ion batteries. Energy and Environmental Science, 2014, 7, 3857-3886.	15.6	1,152
29	Evaluation of electrospun SiO2/nylon 6,6 nanofiber membranes as a thermally-stable separator for lithium-ion batteries. Electrochimica Acta, 2014, 133, 501-508.	2.6	119
30	Carbon-enhanced electrodeposited SnO2/carbon nanofiber composites as anode for lithium-ion batteries. Journal of Power Sources, 2014, 264, 240-247.	4.0	96
31	Chamber-confined silicon–carbon nanofiber composites for prolonged cycling life of Li-ion batteries. Nanoscale, 2014, 6, 7489-7495.	2.8	60
32	Synthesis of urethane acrylate based electromagnetic interference shielding materials. Journal of Applied Polymer Science, 2013, 127, 4957-4966.	1.3	4
33	Fabrication and characterization of SiO ₂ /PVDF composite nanofiberâ€coated PP nonwoven separators for lithiumâ€ion batteries. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1719-1726.	2.4	76
34	Investigation of wicking, wetting and drying properties of acrylic knitted fabrics. Textile Reseach Journal, 2012, 82, 820-831.	1.1	76
35	Preparation and characterization of electrospun polyurethane–polypyrrole nanofibers and films. Journal of Applied Polymer Science, 2012, 125, 4100-4108.	1.3	48
36	A statistical analysis on the influence of process and solution properties on centrifugally spun nanofiber morphology. Journal of Industrial Textiles, 0, , 152808372110293.	1.1	5

#	Article	IF	CITATIONS
37	Cellulose based Hybrid Separators for High Performance Li-ion Batteries. European Journal of Science and Technology, 0, , .	0.5	0