
Cory Merow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7449467/publications.pdf Version: 2024-02-01

CORV MEROW

#	Article	lF	CITATIONS
1	A practical guide to MaxEnt for modeling species' distributions: what it does, and why inputs and settings matter. Ecography, 2013, 36, 1058-1069.	2.1	2,361
2	What do we gain from simplicity versus complexity in species distribution models?. Ecography, 2014, 37, 1267-1281.	2.1	438
3	A standard protocol for reporting species distribution models. Ecography, 2020, 43, 1261-1277.	2.1	397
4	The projected timing of abrupt ecological disruption from climate change. Nature, 2020, 580, 496-501.	13.7	394
5	Climate change increases cross-species viral transmission risk. Nature, 2022, 607, 555-562.	13.7	361
6	Essential biodiversity variables for mapping and monitoring species populations. Nature Ecology and Evolution, 2019, 3, 539-551.	3.4	283
7	The <scp>bien r</scp> package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods in Ecology and Evolution, 2018, 9, 373-379.	2.2	241
8	Advancing population ecology with integral projection models: a practical guide. Methods in Ecology and Evolution, 2014, 5, 99-110.	2.2	231
9	Seasonality and uncertainty in global COVID-19 growth rates. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27456-27464.	3.3	195
10	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	4.7	194
11	<scp>Wallace</scp> : A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution, 2018, 9, 1151-1156.	2.2	170
12	Areas of global importance for conserving terrestrial biodiversity, carbon and water. Nature Ecology and Evolution, 2021, 5, 1499-1509.	3.4	147
13	A checklist for maximizing reproducibility of ecological niche models. Nature Ecology and Evolution, 2019, 3, 1382-1395.	3.4	134
14	Does probability of occurrence relate to population dynamics?. Ecography, 2014, 37, 1155-1166.	2.1	127
15	Towards Process-based Range Modeling of Many Species. Trends in Ecology and Evolution, 2016, 31, 860-871.	4.2	123
16	On using integral projection models to generate demographically driven predictions of species' distributions: development and validation using sparse data. Ecography, 2014, 37, 1167-1183.	2.1	121
17	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	2.1	94
18	A comparison of <scp>M</scp> axlike and <scp>M</scp> axent for modelling species distributions. Methods in Ecology and Evolution, 2014, 5, 215-225.	2.2	91

CORY MEROW

#	Article	IF	CITATIONS
19	Climate change both facilitates and inhibits invasive plant ranges in New England. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3276-E3284.	3.3	87
20	The number of tree species on Earth. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	86
21	High fire frequency and the impact of the 2019–2020 megafires on Australian plant diversity. Diversity and Distributions, 2021, 27, 1166-1179.	1.9	72
22	Integrating occurrence data and expert maps for improved species range predictions. Global Ecology and Biogeography, 2017, 26, 243-258.	2.7	71
23	Developing Dynamic Mechanistic Species Distribution Models: Predicting Bird-Mediated Spread of Invasive Plants across Northeastern North America. American Naturalist, 2011, 178, 30-43.	1.0	66
24	How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 2021, 597, 516-521.	13.7	65
25	Big data of tree species distributions: how big and how good?. Forest Ecosystems, 2017, 4, .	1.3	62
26	A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geoscientific Model Development, 2018, 11, 4537-4562.	1.3	61
27	Intensifying postfire weather and biological invasion drive species loss in a Mediterranean-type biodiversity hotspot. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4697-4702.	3.3	60
28	Improving niche and range estimates with Maxent and point process models by integrating spatially explicit information. Global Ecology and Biogeography, 2016, 25, 1022-1036.	2.7	53
29	Demography beyond the population. Journal of Ecology, 2016, 104, 271-280.	1.9	49
30	Forest community response to invasive pathogens: the case of ash dieback in a British woodland. Journal of Ecology, 2016, 104, 315-330.	1.9	38
31	A Test of Species Distribution Model Transferability Across Environmental and Geographic Space for 108 Western North American Tree Species. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	32
32	Statistical modelling of annual variation for inference on stochastic population dynamics using Integral Projection Models. Methods in Ecology and Evolution, 2015, 6, 1007-1017.	2.2	31
33	Inferring forest fate from demographic data: from vital rates to population dynamic models. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20172050.	1.2	31
34	A review of the heterogeneous landscape of biodiversity databases: Opportunities and challenges for a synthesized biodiversity knowledge base. Global Ecology and Biogeography, 2022, 31, 1242-1260.	2.7	29
35	Functional diversity of the Australian flora: Strong links to species richness and climate. Journal of Vegetation Science, 2021, 32, e13018.	1.1	28
36	Elevated extinction risk of cacti under climate change. Nature Plants, 2022, 8, 366-372.	4.7	28

CORY MEROW

#	Article	IF	CITATIONS
37	Plant spectral diversity as a surrogate for species, functional and phylogenetic diversity across a hyperâ€diverse biogeographic region. Global Ecology and Biogeography, 2021, 30, 1403-1417.	2.7	21
38	Can entropy maximization use functional traits to explain species abundances? A comprehensive evaluation. Ecology, 2011, 92, 1523-1537.	1.5	19
39	Species' range model metadata standards: RMMS. Global Ecology and Biogeography, 2019, 28, 1912-1924.	2.7	18
40	High exposure of global tree diversity to human pressure. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	18
41	Processes of community assembly in an environmentally heterogeneous, high biodiversity region. Ecography, 2017, 40, 561-576.	2.1	17
42	Speeding Up Ecological and Evolutionary Computations in R; Essentials of High Performance Computing for Biologists. PLoS Computational Biology, 2015, 11, e1004140.	1.5	16
43	Continentalâ€scale 1 km hummingbird diversity derived from fusing point records with lateral and elevational expert information. Ecography, 2021, 44, 640-652.	2.1	16
44	The adaptive challenge of extreme conditions shapes evolutionary diversity of plant assemblages at continental scales. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
45	An integrated approach to assessing abiotic and biotic threats to postâ€fire plant species recovery: Lessons from the 2019–2020 Australian fire season. Global Ecology and Biogeography, 2022, 31, 2056-2069.	2.7	14
46	Best practices for reporting climate data in ecology. Nature Climate Change, 2018, 8, 92-94.	8.1	10
47	meteR: an r package for testing the maximum entropy theory of ecology. Methods in Ecology and Evolution, 2017, 8, 241-247.	2.2	9
48	Climate change risk to southern African wild food plants. Regional Environmental Change, 2021, 21, 1.	1.4	8
49	occCite: Tools for querying and managing large biodiversity occurrence datasets. Ecography, 2021, 44, 1228-1235.	2.1	8
50	Reply to: Spatial scale and the synchrony of ecological disruption. Nature, 2021, 599, E11-E13.	13.7	4
51	Serotiny in the South African shrub Protea repens is associated with gradients of precipitation, temperature, and fire intensity. Plant Ecology, 2019, 220, 97-109.	0.7	3
52	Spatiotemporal effects of Hurricane Ivan on an endemic epiphytic orchid: 10 years of follow-up. Plant Ecology and Diversity, 2020, 13, 29-45.	1.0	3
53	How to Publish at Pandemic Speed. BioScience, 0, , .	2.2	0