Zhenghui Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7448693/publications.pdf Version: 2024-02-01

ZHENCHULLUL

#	Article	IF	CITATIONS
1	Capture of Toxic Gases by Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2020, 8, 5410-5430.	6.7	122
2	Preparation and characterization of regenerated cellulose from ionic liquid using different methods. Carbohydrate Polymers, 2015, 117, 99-105.	10.2	119
3	Visible-Light-Driven Photoreduction of CO ₂ to CH ₄ over N,O,P-Containing Covalent Organic Polymer Submicrospheres. ACS Catalysis, 2018, 8, 4576-4581.	11.2	99
4	Methylation of C(sp ³)–H/C(sp ²)–H Bonds with Methanol Catalyzed by Cobalt System. Organic Letters, 2017, 19, 5228-5231.	4.6	94
5	Efficient Dissolution of Lithium-Ion Batteries Cathode LiCoO ₂ by Polyethylene Glycol-Based Deep Eutectic Solvents at Mild Temperature. ACS Sustainable Chemistry and Engineering, 2020, 8, 11713-11720.	6.7	91
6	Efficient Cobaltâ€Catalyzed Methylation of Amines Using Methanol. Advanced Synthesis and Catalysis, 2017, 359, 4278-4283.	4.3	90
7	Reductive amination/cyclization of levulinic acid to pyrrolidones versus pyrrolidines by switching the catalyst from AlCl ₃ to RuCl ₃ under mild conditions. Green Chemistry, 2017, 19, 3525-3529.	9.0	63
8	Visible-light-driven conversion of CO ₂ from air to CO using an ionic liquid and a conjugated polymer. Green Chemistry, 2017, 19, 5777-5781.	9.0	62
9	N-Doped porous carbon nanotubes: synthesis and application in catalysis. Chemical Communications, 2017, 53, 929-932.	4.1	43
10	A rose bengal-functionalized porous organic polymer for carboxylative cyclization of propargyl alcohols with CO ₂ . Chemical Communications, 2019, 55, 12475-12478.	4.1	43
11	Extraction of 5-HMF from the conversion of glucose in ionic liquid [Bmim]Cl by compressed carbon dioxide. Green Chemistry, 2015, 17, 2719-2722.	9.0	38
12	Rhodium-Catalyzed Formylation of Aryl Halides with CO ₂ and H ₂ . Organic Letters, 2018, 20, 5130-5134.	4.6	37
13	Co-catalyzed Hydrogenation of Levulinic Acid to γ-Valerolactone under Atmospheric Pressure. ACS Sustainable Chemistry and Engineering, 2019, 7, 18236-18241.	6.7	32
14	CO ₂ switchable deep eutectic solvents for reversible emulsion phase separation. Chemical Communications, 2021, 57, 627-630.	4.1	32
15	Mesoporous imine-based organic polymer: catalyst-free synthesis in water and application in CO ₂ conversion. Chemical Communications, 2018, 54, 7633-7636.	4.1	28
16	Copper-catalyzed synthesis of benzanilides from lignin model substrates 2-phenoxyacetophenones under an air atmosphere. New Journal of Chemistry, 2018, 42, 1223-1227.	2.8	24
17	Cobalt-catalyzed synthesis of N-containing heterocycles <i>via</i> cyclization of <i>ortho</i> -substituted anilines with CO ₂ /H ₂ . Green Chemistry, 2019, 21, 1695-1701.	9.0	24
18	Surface tension and surface thermodynamic properties of PEG-based deep eutectic solvents. Journal of Molecular Liquids, 2020, 318, 114042.	4.9	24

ZHENGHUI LIU

#	Article	IF	CITATIONS
19	The dynamic process of radioactive iodine removal by ionic liquid 1-butyl-3-methyl-imidazolium acetate: discriminating and quantifying halogen bonds versus induced force. RSC Advances, 2014, 4, 55417-55429.	3.6	23
20	Ethanol-mediated <i>N</i> -formylation of amines with CO ₂ /H ₂ over cobalt catalysts. New Journal of Chemistry, 2018, 42, 13933-13937.	2.8	19
21	Vaporization enthalpy, long-term evaporation and evaporation mechanism of polyethylene glycol-based deep eutectic solvents. New Journal of Chemistry, 2020, 44, 9493-9501.	2.8	18
22	Cobalt-Catalyzed Synthesis of Unsymmetrically <i>N</i> , <i>N</i> -Disubstituted Formamides via Reductive Coupling of Primary Amines and Aldehydes with CO ₂ and H ₂ . Organic Letters, 2018, 20, 6622-6626.	4.6	16
23	Ionic liquid/H ₂ O-mediated synthesis of mesoporous organic polymers and their application in methylation of amines. Chemical Communications, 2017, 53, 5962-5965.	4.1	15
24	CO ₂ â€Assisted Fabrication of Defectâ€Engineered Carbon Nitride for Enhanced Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2020, 15, 4113-4117.	3.3	11
25	Polyureas derived from CO ₂ and diamines: highly efficient catalysts for C–H arylation of benzene. New Journal of Chemistry, 2017, 41, 51-55.	2.8	9
26	Rhodium-catalyzed reductive carbonylation of aryl iodides to arylaldehydes with syngas. Beilstein Journal of Organic Chemistry, 2020, 16, 645-656.	2.2	9
27	Small organic molecules with tailored structures: initiators in the transition-metal-free C–H arylation of unactivated arenes. RSC Advances, 2020, 10, 14500-14509.	3.6	9
28	Preparation of cyclic imides from alkene-tethered amides: application of homogeneous Cu(<scp>ii</scp>) catalytic systems. RSC Advances, 2020, 10, 7698-7707.	3.6	8
29	Room-temperature conversion of CO ₂ into quinazoline-2,4(1 <i>H</i> ,3 <i>H</i>)-dione using deep eutectic solvents at atmospheric pressure with high efficiency. Reaction Chemistry and Engineering, 2022, 7, 1968-1977.	3.7	6
30	Oxidative annulations via double CH bond cleavages: Approach to quinoline derivatives. Applied Organometallic Chemistry, 2021, 35, e6156.	3.5	3