Mahalingam Govindaraj

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7448669/publications.pdf

Version: 2024-02-01

361413 330143 1,716 70 20 37 citations h-index g-index papers 73 73 73 1571 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Editorial: Sorghum and Pearl Millet as Climate Resilient Crops for Food and Nutrition Security. Frontiers in Plant Science, 2022, 13, 851970.	3.6	12
2	Breeding Drought-Tolerant Pearl Millet Using Conventional and Genomic Approaches: Achievements and Prospects. Frontiers in Plant Science, 2022, 13, 781524.	3.6	16
3	Exploring plant growth-promoting. Crop and Pasture Science, 2022, 73, 484-493.	1.5	5
4	Identification of Candidate Genes Regulating Drought Tolerance in Pearl Millet. International Journal of Molecular Sciences, 2022, 23, 6907.	4.1	8
5	Harnessing wild relatives of pearl millet for germplasm enhancement: Challenges and opportunities. Crop Science, 2021, 61, 177-200.	1.8	22
6	Efficacy of seed defense proteins in biofortified pearl millet lines against blast and downy mildew. Acta Physiologiae Plantarum, 2021, 43, 1.	2.1	0
7	Deciphering the antagonistic effect of Streptomyces spp. and host-plant resistance induction against charcoal rot of sorghum. Planta, 2021, 253, 57.	3.2	14
8	Genetic Gains in Pearl Millet in India: Insights Into Historic Breeding Strategies and Future Perspective. Frontiers in Plant Science, 2021, 12, 645038.	3.6	35
9	Performance and Stability of Pearl Millet Varieties for Grain Yield and Micronutrients in Arid and Semi-Arid Regions of India. Frontiers in Plant Science, 2021, 12, 670201.	3.6	19
10	Harnessing Sorghum Landraces to Breed High-Yielding, Grain Mold-Tolerant Cultivars With High Protein for Drought-Prone Environments. Frontiers in Plant Science, 2021, 12, 659874.	3.6	11
11	Sorghum Pan-Genome Explores the Functional Utility for Genomic-Assisted Breeding to Accelerate the Genetic Gain. Frontiers in Plant Science, 2021, 12, 666342.	3.6	41
12	Development of Sorghum Genotypes for Improved Yield and Resistance to Grain Mold Using Population Breeding Approach. Frontiers in Plant Science, 2021, 12, 687332.	3.6	8
13	Identification of High-Yielding Iron-Biofortified Open-Pollinated Varieties of Pearl Millet in West Africa. Frontiers in Plant Science, 2021, 12, 688937.	3.6	6
14	Transition From Targeted Breeding to Mainstreaming of Biofortification Traits in Crop Improvement Programs. Frontiers in Plant Science, 2021, 12, 703990.	3.6	21
15	Drought and High Temperature Stress in Sorghum: Physiological, Genetic, and Molecular Insights and Breeding Approaches. International Journal of Molecular Sciences, 2021, 22, 9826.	4.1	39
16	Addressing Iron and Zinc Micronutrient Malnutrition Through Nutrigenomics in Pearl Millet: Advances and Prospects. Frontiers in Genetics, 2021, 12, 723472.	2.3	6
17	Generation Mean Analysis Reveals the Predominant Gene Effects for Grain Iron and Zinc Contents in Pearl Millet. Frontiers in Plant Science, 2021, 12, 693680.	3.6	5
18	Association of Grain Iron and Zinc Content With Other Nutrients in Pearl Millet Germplasm, Breeding Lines, and Hybrids. Frontiers in Nutrition, 2021, 8, 746625.	3.7	11

#	Article	IF	CITATIONS
19	Balanced amino acid and higher micronutrients in millets complements legumes for improved human dietary nutrition. Cereal Chemistry, 2020, 97, 74-84.	2.2	56
20	Genome-wide association study uncovers genomic regions associated with grain iron, zinc and protein content in pearl millet. Scientific Reports, 2020, 10, 19473.	3.3	33
21	Exploring the genetic variability and diversity of pearl millet core collection germplasm for grain nutritional traits improvement. Scientific Reports, 2020, 10, 21177.	3.3	17
22	Identification and Characterization of a Streptomyces albus Strain and Its Secondary Metabolite Organophosphate against Charcoal Rot of Sorghum. Plants, 2020, 9, 1727.	3.5	18
23	Comparative Profiling of Volatile Compounds in Popular South Indian Traditional and Modern Rice Varieties by Gas Chromatography–Mass Spectrometry Analysis. Frontiers in Nutrition, 2020, 7, 599119.	3.7	18
24	Genetic variation and diversity for grain iron, zinc, protein and agronomic traits in advanced breeding lines of pearl millet [Pennisetum glaucum (L.) R. Br.] for biofortification breeding. Genetic Resources and Crop Evolution, 2020, 67, 2009-2022.	1.6	26
25	Genomics-Integrated Breeding for Carotenoids and Folates in Staple Cereal Grains to Reduce Malnutrition. Frontiers in Genetics, 2020, 11, 414.	2.3	29
26	Genetic Variability, Diversity and Interrelationship for Twelve Grain Minerals in 122 Commercial Pearl Millet Cultivars in India. Agricultural Research, 2020, 9, 516-525.	1.7	10
27	Biofortified pearl millet cultivars offer potential solution to tackle malnutrition in India , 2020, , 385-396.		9
28	Gene effects and heterosis for grain Fe and Zn content in barnyard millet (Echinochloa frumentacea) Tj ETQq0 0	0 rgBT /Ον	verlock 10 Tf 5
29	Maternal inheritance for grain iron and zinc densities in pearl millet. Indian Journal of Genetics and Plant Breeding, 2020, 79, .	0.5	1
30	Nutritional Security in Drylands: Fast-Track Intra-Population Genetic Improvement for Grain Iron and Zinc Densities in Pearl Millet. Frontiers in Nutrition, 2019, 6, 74.	3.7	6
31	Breeding Biofortified Pearl Millet Varieties and Hybrids to Enhance Millet Markets for Human Nutrition. Agriculture (Switzerland), 2019, 9, 106.	3.1	39
32	Conventional and Molecular Breeding Approaches for Biofortification of Pearl Millet., 2019,, 85-107.		5
33	Application of Plant Breeding and Genomics for Improved Sorghum and Pearl Millet Grain Nutritional Quality., 2019,, 51-68.		6
34	Improvement of restorer lines for strengthening pearl millet (Pennisetum glaucum L.) hybrid breeding in West and Central Africa. Journal of Agricultural and Crop Research, 2019, 7, 204-214.	0.3	3
35	Effect of isonuclear-alloplasmic cytoplasmic male sterility system on grain yield traits in pearl millet. Indian Journal of Genetics and Plant Breeding, 2019, 79, .	0.5	2
36	Terminal drought and a d dwarfing gene affecting grain iron and zinc density in pearl millet. Journal of Cereal Science, 2018, 79, 247-252.	3.7	1

#	Article	IF	CITATIONS
37	Inheritance of fertility restoration of A ₅ cytoplasmic-nuclear male sterility system in pearl millet [<i>Pennisetum glaucum</i> (L.) R. Br.]. Indian Journal of Genetics and Plant Breeding, 2018, 78, 228.	0.5	7
38	Effect of grain colour on iron and zinc density in pearl millet. Indian Journal of Genetics and Plant Breeding, 2018, 78, 247.	0.5	2
39	Reselection within population for high grain iron density and its effects on agronomic traits in pearl millet. Electronic Journal of Plant Breeding, 2018, 9, 450.	0.1	O
40	Inbreeding Effects on Grain Iron and Zinc Concentrations in Pearl Millet. Crop Science, 2017, 57, 2699-2706.	1.8	4
41	Possible effect of threshing method on grain iron and zinc density estimation in pearl millet: a contribution to biofortification breeding. Electronic Journal of Plant Breeding, 2017, 8, 668.	0.1	O
42	Allelic relationship between restorer genes for A1 and A4 CMS systems in pearl millet. Indian Journal of Genetics and Plant Breeding, 2017, 78, 90.	0.5	0
43	Identifying Promising Pearl Millet Hybrids Using AMMI and Clustering Models. International Journal of Current Microbiology and Applied Sciences, 2017, 6, 1348-1359.	0.1	5
44	Tester Effect on Combining Ability and Its Relationship with Line Performance per se for Grain Iron and Zinc Densities in Pearl Millet. Crop Science, 2016, 56, 689-696.	1.8	11
45	Energy-Dispersive X-ray Fluorescence Spectrometry for Cost-Effective and Rapid Screening of Pearl Millet Germplasm and Breeding Lines for Grain Iron and Zinc Density. Communications in Soil Science and Plant Analysis, 2016, 47, 2126-2134.	1.4	22
46	Intra-population genetic variance for grain iron and zinc contents and agronomic traits in pearl millet. Crop Journal, 2016, 4, 48-54.	5.2	24
47	Genetic architecture of open-pollinated varieties of pearl millet for grain iron and zinc densities. Indian Journal of Genetics and Plant Breeding, 2016, 76, 299.	0.5	11
48	Seed Set and Xenia Effects on Grain Iron and Zinc Density in Pearl Millet. Crop Science, 2015, 55, 821-827.	1.8	13
49	Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives. Genetics Research International, 2015, 2015, 1-14.	2.0	422
50	Unlimited Thirst for Genome Sequencing, Data Interpretation, and Database Usage in Genomic Era: The Road towards Fast-Track Crop Plant Improvement. Genetics Research International, 2015, 2015, 1-15.	2.0	18
51	<i>Iniadi</i> pearl millet germplasm as a valuable genetic resource for high grain iron and zinc densities. Plant Genetic Resources: Characterisation and Utilisation, 2015, 13, 75-82.	0.8	21
52	Electrochemical treatment of endocrine-disrupting chemical from aqueous solution. Desalination and Water Treatment, 2015, 53, 2664-2674.	1.0	9
53	Grain iron and zinc density in pearl millet: combining ability, heterosis and association with grain yield and grain size. SpringerPlus, 2014, 3, 763.	1.2	70
54	Artificial neural network model for prediction of rock properties from sound level produced during drilling. Geomechanics and Geoengineering, 2013, 8, 53-61.	1.8	24

#	Article	IF	CITATIONS
55	Regression analysis and ANN models to predict rock properties from sound levels produced during drilling. International Journal of Rock Mechanics and Minings Sciences, 2013, 58, 61-72.	5.8	54
56	Electrochemical oxidation of bisphenol-A from aqueous solution using graphite electrodes. Environmental Technology (United Kingdom), 2013, 34, 503-511.	2.2	36
57	Combining Ability and Heterosis for Grain Iron and Zinc Densities in Pearl Millet. Crop Science, 2013, 53, 507-517.	1.8	65
58	Genetic Analysis for Quantitative and Quality Characters in Three Single Crosses of Upland Cotton. Notulae Scientia Biologicae, 2013, 5, 450-453.	0.4	1
59	Genetic enhancement of grain iron and zinc content in pearl millet. Quality Assurance and Safety of Crops and Foods, 2012, 4, 119-125.	3.4	96
60	Genetics of fertility restoration of the A ₄ cytoplasmic-nuclear male sterility system in pearl millet. Czech Journal of Genetics and Plant Breeding, 2012, 48, 87-92.	0.8	10
61	Breaking the intergeneric hybridization barrier in Carica papaya and Vasconcellea cauliflora. Scientia Horticulturae, 2011, 130, 787-794.	3.6	23
62	Genetic variability and heritability of grain yield components and grain mineral concentration in India's pearl millet (<i>Pennisetum glaucum</i> (L) R. Br.) accessions. African Journal of Food, Agriculture, Nutrition and Development, 2011, 11, .	0.2	15
63	A new approach for estimation of properties of metamorphic rocks. International Journal of Mining and Mineral Engineering, 2011, 3, 109.	0.3	13
64	Sound level produced during rock drilling vis-Ã-vis rock properties. Engineering Geology, 2011, 123, 333-337.	6.3	37
65	Prediction of Uniaxial Compressive Strength, Tensile Strength and Porosity of Sedimentary Rocks Using Sound Level Produced During Rotary Drilling. Rock Mechanics and Rock Engineering, 2011, 44, 613-620.	5.4	48
66	Estimating rock properties using sound level during drilling: field investigation. International Journal of Mining and Mineral Engineering, 2010, 2, 169.	0.3	17
67	Electrochemical oxidation of tannic acid contaminated wastewater by RuO ₂ /IrO ₂ /TaO ₂ â€coated titanium and graphite anodes. Environmental Technology (United Kingdom), 2010, 31, 1613-1622.	2.2	38
68	Comparative Study of Electrocoagulation and Electrooxidation Processes for the Degradation of Ellagic Acid From Aqueous Solution. Separation Science and Technology, 2010, 46, 272-282.	2.5	12
69	Decolourization of Rhodamine B from aqueous solution by electrochemical oxidation using graphite electrodes. Desalination and Water Treatment, 0, , 1-7.	1.0	12
70	Breeding Cultivars for Heat Stress Tolerance in Staple Food Crops. , 0, , .		13