Margarida Moldao-Martins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7448395/publications.pdf

Version: 2024-02-01

201674 182427 2,784 65 27 51 citations h-index g-index papers 65 65 65 3702 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of moderate hydrostatic pressures on the enzymatic activity and bioactive composition of pineapple byâ€products. Journal of Food Process Engineering, 2022, 45, e13537.	2.9	7
2	Influence of a heat-shock pre-treatment on wound-induced phenolic biosynthesis as an alternative strategy towards fresh-cut carrot processing. Food Science and Technology International, 2022, 28, 421-429.	2.2	2
3	Application of an Eco-Friendly Antifungal Active Package to Extend the Shelf Life of Fresh Red Raspberry (Rubus idaeus L. cv. â€~Kweli'). Foods, 2022, 11, 1805.	4.3	13
4	Storage Stability and In Vitro Bioaccessibility of Microencapsulated Tomato (Solanum Lycopersicum) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf .
5	Composite Coatings of Chitosan and Alginate Emulsions with Olive Oil to Enhance Postharvest Quality and Shelf Life of Fresh Figs (Ficus carica L. cv. â€~Pingo De Mel'). Foods, 2021, 10, 718.	4.3	21
6	Thermal and light stability of anthocyanins from strawberry by-products non-encapsulated and encapsulated with inulin. Acta Scientiarum Polonorum, Technologia Alimentaria, 2021, 20, 79-92.	0.3	1
7	Pineapple (Ananas comosus L.) By-Products Valorization: Novel Bio Ingredients for Functional Foods. Molecules, 2021, 26, 3216.	3.8	5
8	Heat Treatment and Wounding as Abiotic Stresses to Enhance the Bioactive Composition of Pineapple By-Products. Applied Sciences (Switzerland), 2021, 11, 4313.	2.5	3
9	Optimization of Natural Antioxidants Extraction from Pineapple Peel and Their Stabilization by Spray Drying. Foods, 2021, 10, 1255.	4.3	19
10	Exploring physicochemical and cytogenomic diversity of African cowpea and common bean. Scientific Reports, 2021, 11, 12838.	3.3	7
11	Optimization of Ultrasound-Assisted Extraction of Bioactive Compounds from Pelvetia canaliculata to Sunflower Oil. Foods, 2021, 10, 1732.	4.3	13
12	Design of Chitosan and Alginate Emulsion-Based Formulations for the Production of Monolayer Crosslinked Edible Films and Coatings. Foods, 2021, 10, 1654.	4.3	18
13	Food Security and Nutrition in Mozambique: Comparative Study with Bean Species Commercialised in Informal Markets. Sustainability, 2021, 13, 8839.	3.2	7
14	Effect of Heat Treatment on Smoothie Quality by Response Surface Methodology. Proceedings (mdpi), 2021, 70, 6.	0.2	0
15	Nutritional and Functional Properties of Wild Leafy Vegetables for Improving Food Security in Southern Angola. Frontiers in Sustainable Food Systems, 2021, 5, .	3.9	6
16	Optimization of the Effect of Pineapple By-Products Enhanced in Bromelain by Hydrostatic Pressure on the Texture and Overall Quality of Silverside Beef Cut. Foods, 2020, 9, 1752.	4.3	15
17	Application of Edible Alginate Films with Pineapple Peel Active Compounds on Beef Meat Preservation. Antioxidants, 2020, 9, 667.	5.1	35
18	Microencapsulation of Pineapple Peel Extract by Spray Drying Using Maltodextrin, Inulin, and Arabic Gum as Wall Matrices. Foods, 2020, 9, 718.	4.3	46

#	Article	IF	Citations
19	Methods for determining bioavailability and bioaccessibility of bioactive compounds and nutrients., 2019, , 23-54.		53
20	Fourier Transform Infrared (FT-IR) Spectroscopy as a Possible Rapid Tool to Evaluate Abiotic Stress Effects on Pineapple By-Products. Applied Sciences (Switzerland), 2019, 9, 4141.	2.5	28
21	Microencapsulation of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -Carotene by Spray Drying: Effect of Wall Material Concentration and Drying Inlet Temperature. International Journal of Food Science, 2019, 2019, 1-12.	2.0	57
22	Microencapsulation of Tomato (Solanum lycopersicum L.) Pomace Ethanolic Extract by Spray Drying: Optimization of Process Conditions. Applied Sciences (Switzerland), 2019, 9, 612.	2.5	33
23	Advances in the Application of Microcapsules as Carriers of Functional Compounds for Food Products. Applied Sciences (Switzerland), 2019, 9, 571.	2.5	79
24	Antioxidants of Natural Plant Origins: From Sources to Food Industry Applications. Molecules, 2019, 24, 4132.	3.8	559
25	Edible Leafy Vegetables from West Africa (Guinea-Bissau): Consumption, Trade and Food Potential. Foods, 2019, 8, 493.	4.3	15
26	FucoPol and chitosan bilayer films for walnut kernels and oil preservation. LWT - Food Science and Technology, 2018, 91, 34-39.	5.2	18
27	Enzyme-Assisted Extraction of Fruit Juices. , 2018, , 183-200.		18
28	Biodegradable Films Based on Gelatin and Papaya Peel Microparticles with Antioxidant Properties. Food and Bioprocess Technology, 2018, 11, 536-550.	4.7	62
29	Active food packaging prepared with chitosan and olive pomace. Food Hydrocolloids, 2018, 74, 139-150.	10.7	155
30	In vitro Shoot Cultures of Pterospartum tridentatum as an Alternative to Wild Plants as a Source of Bioactive Compounds. Natural Product Communications, 2018, 13, 1934578X1801300.	0.5	3
31	Effect of thermal and high hydrostatic pressure treatments on mango bars shelf-life under refrigeration. Journal of Food Engineering, 2017, 212, 113-120.	5.2	9
32	Using a bacterial fucose-rich polysaccharide as encapsulation material of bioactive compounds. International Journal of Biological Macromolecules, 2017, 104, 1099-1106.	7.5	25
33	Calcium–Alginate–Inulin Microbeads as Carriers for Aqueous Carqueja Extract. Journal of Food Science, 2016, 81, E65-75.	3.1	49
34	Peel removal improves quality without antioxidant loss, through wound-induced phenolic biosynthesis in shredded carrot. Postharvest Biology and Technology, 2016, 120, 232-239.	6.0	26
35	Optimisation of gellan gum edible coating for ready-to-eat mango (Mangifera indica L.) bars. International Journal of Biological Macromolecules, 2016, 84, 43-53.	7.5	32
36	The effect of fruit cultivar/origin and storage time on sorbets quality. LWT - Food Science and Technology, 2016, 68, 462-469.	5.2	5

#	Article	IF	CITATIONS
37	Texture, microstructure and consumer preference of mango bars jellified with gellan gum. LWT - Food Science and Technology, 2015, 62, 584-591.	5.2	26
38	Effect of UV-C radiation on bioactive compounds of pineapple (<i>Ananas comosus</i> L. Merr.) by-products. Journal of the Science of Food and Agriculture, 2015, 95, 44-52.	3.5	65
39	Characterization of multilayered and composite edible films from chitosan and beeswax. Food Science and Technology International, 2015, 21, 83-93.	2.2	41
40	Novel mango bars using gellan gum as gelling agent: Rheological and microstructural studies. LWT - Food Science and Technology, 2015, 62, 576-583.	5.2	29
41	Alternative Sanitizing Methods to Ensure Safety and Quality of Fresh-Cut Kiwifruit. Journal of Food Processing and Preservation, 2014, 38, 1-10.	2.0	24
42	Fresh-Cut Kiwifruit Structure and Firmness as Affected by Heat Pre-treatments and Post-cut Calcium Dips. Food and Bioprocess Technology, 2014, 7, 1128-1136.	4.7	16
43	Genetic diversity in Mentha cervina based on morphological traits, essential oils profile and ISSRs markers. Biochemical Systematics and Ecology, 2013, 51, 50-59.	1.3	23
44	Trichomes micromorphology and essential oil variation at different developmental stages of cultivated and wild growing Mentha pulegium L. populations from Portugal. Industrial Crops and Products, 2013, 43, 692-700.	5. 2	50
45	Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv) Tj ETQq $1\ 1$	0.784314 5.2	1 rgBT /Over 258
46	Chemical composition and antibacterial activity of the essential oils from the medicinal plant Mentha cervina L. grown in Portugal. Medicinal Chemistry Research, 2012, 21, 3485-3490.	2.4	13
47	Fresh-cut carrot (cv. Nantes) quality as affected by abiotic stress (heat shock and UV-C irradiation) pre-treatments. LWT - Food Science and Technology, 2012, 48, 197-203.	5.2	75
48	MODELING OF PREHEAT TREATMENT OPTIMIZATION APPLIED TO FRESH UT "ROCHA―PEAR. Journal of Fo Quality, 2011, 34, 315-326.	od 2.6	4
49	Physical characterization of rice starch spherical aggregates produced by spray-drying. Journal of Food Engineering, 2011, 104, 36-42.	5.2	29
50	Bioactive compounds from flesh and by-product of fresh-cut watermelon cultivars. Journal of the Science of Food and Agriculture, 2011, 91, 805-812.	3.5	108
51	Evaluation of a pre-cut heat treatment as an alternative to chlorine in minimally processed shredded carrot. Innovative Food Science and Emerging Technologies, 2010, 11, 155-161.	5.6	57
52	Quality attributes of shredded carrot (Daucus carota L. cv. Nantes) as affected by alternative decontamination processes to chlorine. Innovative Food Science and Emerging Technologies, 2009, 10, 61-69.	5.6	71
53	Influence of moderate heat pre-treatments on physical and chemical characteristics of kiwifruit slices. European Food Research and Technology, 2008, 226, 641-651.	3.3	25
54	Morphology of secretory structures and essential oil composition in <i>Mentha cervina</i> L. from Portugal. Flavour and Fragrance Journal, 2008, 23, 340-347.	2.6	14

#	Article	IF	CITATIONS
55	The effect of calcium dips combined with mild heating of whole kiwifruit for fruit slices quality maintenance. Food Chemistry, 2008, 108, 191-197.	8.2	36
56	Metabolic response to combined mild heat pre-treatments and modified atmosphere packaging on fresh-cut peach. European Food Research and Technology, 2006, 222, 217-222.	3.3	29
57	Effects of maturity stage and mild heat treatments on quality of minimally processed kiwifruit. Journal of Food Engineering, 2006, 76, 616-625.	5 . 2	78
58	Oxidative stability of olive oil flavoured by Capsicum frutescens supercritical fluid extracts. European Journal of Lipid Science and Technology, 2006, 108, 421-428.	1.5	22
59	Thermal properties of gluten proteins of two soft wheat varieties. Food Chemistry, 2005, 93, 459-465.	8.2	48
60	Supercritical fluid extraction of red pepper (Capsicum frutescens L.). Journal of Supercritical Fluids, 2004, 30, 155-161.	3.2	55
61	Olive oil flavoured by the essential oils of Mentha $\tilde{A}-$ piperita and Thymus mastichina L Food Quality and Preference, 2004, 15, 447-452.	4.6	66
62	Use of mild heat pre-treatments for quality retention of fresh-cut  Rocha' pear. Postharvest Biology and Technology, 2003, 30, 153-160.	6.0	54
63	Sensory and chemical evaluation of Thymus zygis L. essential oil and compressed CO2 extracts. European Food Research and Technology, 2002, 214, 207-211.	3. 3	16
64	A differential scanning calorimetry study of different lupin species meals. European Food Research and Technology, 2002, 215, 317-321.	3.3	2
65	Quality changes during thermal processing of two mixed formulas of fruits and vegetables pulps. Emirates Journal of Food and Agriculture, 0, , 271.	1.0	O