Juan Carlos Izpisua Belmonte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7447927/publications.pdf

Version: 2024-02-01

172 papers 17,580 citations

63 h-index 125 g-index

176 all docs

176 docs citations

176 times ranked

22816 citing authors

#	Article	IF	Citations
1	Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein and Cell, 2022, 13, 220-226.	4.8	36
2	Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein and Cell, 2022, 13, 615-622.	4.8	9
3	OUP accepted manuscript. Stem Cells Translational Medicine, 2022, 11, 231-238.	1.6	10
4	Transcriptomic profiling fuels the derivation of stable pig epiblast stem cells. Cell Research, 2022, , .	5.7	1
5	Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discovery, 2022, 8, 6.	3.1	50
6	OUP accepted manuscript. Nucleic Acids Research, 2022, , .	6.5	14
7	Time matters: Human blastoids resemble the sequence of blastocyst development. Cell, 2022, 185, 581-584.	13.5	5
8	Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Frontiers in Cell and Developmental Biology, 2022, 10, 786031.	1.8	2
9	In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nature Aging, 2022, 2, 243-253.	5.3	101
10	Destabilizing heterochromatin by APOE mediates senescence. Nature Aging, 2022, 2, 303-316.	5.3	36
11	InÂvivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Reports, 2022, 39, 110730.	2.9	41
12	FOXM1 delays senescence and extends lifespan. Nature Aging, 2022, 2, 373-374.	5.3	4
13	Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Developmental Cell, 2022, 57, 1347-1368.e12.	3.1	32
14	Deciphering aging at three-dimensional genomic resolution. , 2022, 1, 100034.		6
15	Emerging role of RNA m6A modification in aging regulation. , 2022, 1, .		5
16	Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell, 2022, 29, 990-1005.e10.	5.2	53
17	Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing. Nature Communications, 2022, 13, .	5.8	6
18	A single-cell transcriptomic atlas of primate pancreatic islet aging. National Science Review, 2021, 8, nwaa127.	4.6	37

#	Article	IF	CITATIONS
19	Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Research, 2021, 31, 187-205.	5.7	67
20	A Single-Cell Transcriptomic Atlas of Human Skin Aging. Developmental Cell, 2021, 56, 383-397.e8.	3.1	145
21	FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein and Cell, 2021, 12, 145-151.	4.8	27
22	Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Research, 2021, 31, 415-432.	5.7	88
23	Unlocking Tissue Regenerative Potential by Epigenetic Reprogramming. Cell Stem Cell, 2021, 28, 5-7.	5.2	9
24	Editors' Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		0
25	Expanding the Toolbox and Targets for Gene Editing. Trends in Molecular Medicine, 2021, 27, 203-206.	3.5	4
26	Chimeric contribution of human extended pluripotent stem cells to monkey embryos exÂvivo. Cell, 2021, 184, 2020-2032.e14.	13.5	85
27	Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein and Cell, 2021, 12, 695-716.	4.8	49
28	Generation of RRMS and PPMS specific iPSCs as a platform for modeling Multiple Sclerosis. Stem Cell Research, 2021, 53, 102319.	0.3	13
29	In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nature Communications, 2021, 12, 3094.	5.8	51
30	Simultaneous detection and mutation surveillance of SARS-CoV-2 and multiple respiratory viruses by rapid field-deployable sequencing. Med, 2021, 2, 689-700.e4.	2.2	16
31	Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional \hat{l}^2 cells. Nature Communications, 2021, 12, 3330.	5.8	21
32	A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nature Biomedical Engineering, 2021, 5, 787-792.	11.6	24
33	c-MYC Triggers Lipid Remodelling During Early Somatic Cell Reprogramming to Pluripotency. Stem Cell Reviews and Reports, 2021, 17, 2245-2261.	1.7	6
34	A genome-wide CRISPR-based screen identifies $\langle i \rangle$ KAT7 $\langle i \rangle$ as a driver of cellular senescence. Science Translational Medicine, 2021, 13, .	5.8	79
35	Tailored chromatin modulation to promote tissue regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 3-15.	2.3	10
36	A human circulating immune cell landscape in aging and COVID-19. Protein and Cell, 2020, 11, 740-770.	4.8	179

#	Article	IF	CITATIONS
37	First progeria monkey model generated using base editor. Protein and Cell, 2020, 11, 862-865.	4.8	1
38	Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes, 2020, 11, 976.	1.0	9
39	A \hat{I}^2 -galactosidase kiss of death for senescent cells. Cell Research, 2020, 30, 556-557.	5.7	4
40	Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming. Cell Reports, 2020, 32, 107870.	2.9	51
41	Cell surface GRP78 promotes stemness in normal and neoplastic cells. Scientific Reports, 2020, 10, 3474.	1.6	30
42	Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell, 2020, 180, 984-1001.e22.	13.5	206
43	Mitochondrial dynamics and metabolism in induced pluripotency. Experimental Gerontology, 2020, 133, 110870.	1.2	15
44	Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell, 2020, 180, 585-600.e19.	13.5	306
45	\hat{l} ±KLOTHO and sTGF \hat{l} 2R2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein and Cell, 2020, 11, 219-226.	4.8	12
46	Single-cell omics in ageing: a young and growing field. Nature Metabolism, 2020, 2, 293-302.	5.1	67
47	The ageing epigenome and itsÂrejuvenation. Nature Reviews Molecular Cell Biology, 2020, 21, 137-150.	16.1	276
48	Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388.	9.4	236
49	Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell, 2019, 25, 373-387.e9.	5.2	219
50	Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nature Communications, 2019, 10, 3329.	5 . 8	82
51	Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell, 2019, 179, 687-702.e18.	13.5	175
52	Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366, .	6.0	137
53	Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Research, 2019, 29, 804-819.	5.7	51
54	Induced pluripotent stem cellâ€based modeling of mutant <scp>LRRK</scp> 2â€associated Parkinson's disease. European Journal of Neuroscience, 2019, 49, 561-589.	1.2	20

#	Article	IF	Citations
55	Towards precise, safe genome editing. Cell Research, 2019, 29, 687-689.	5.7	O
56	Development of de novo epithelialization method for treatment of cutaneous ulcers. Journal of Dermatological Science, 2019, 95, 8-12.	1.0	2
57	Design Approaches for Generating Organ Constructs. Cell Stem Cell, 2019, 24, 877-894.	5.2	26
58	Mutations in foregut SOX2+ cells induce efficient proliferation via CXCR2 pathway. Protein and Cell, 2019, 10, 485-495.	4.8	4
59	Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biology, 2019, 17, e3000201.	2.6	104
60	Gene Editing in 3D Cultured Nephron Progenitor Cell Lines. Methods in Molecular Biology, 2019, 1926, 151-159.	0.4	4
61	Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nature Materials, 2019, 18, 397-405.	13.3	201
62	Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nature Medicine, 2019, 25, 419-422.	15.2	113
63	Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein and Cell, 2019, 10, 249-271.	4.8	41
64	MiR-23~27~24–mediated control of humoral immunity reveals a TOX-driven regulatory circuit in follicular helper T cell differentiation. Science Advances, 2019, 5, eaaw1715.	4.7	21
65	FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. Cell Stem Cell, 2019, 24, 447-461.e8.	5.2	78
66	Age-related cardiopathies gene editing. Aging, 2019, 11, 1327-1328.	1.4	1
67	Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein and Cell, 2018, 9, 333-350.	4.8	56
68	Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2090-2095.	3.3	181
69	Elixir of Life. Circulation Research, 2018, 122, 128-141.	2.0	9
70	Deconstructing the pluripotency gene regulatory network. Nature Cell Biology, 2018, 20, 382-392.	4.6	79
71	In vivo genome editing via the HITI method as a tool for gene therapy. Journal of Human Genetics, 2018, 63, 157-164.	1.1	90
72	Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11681-E11690.	3.3	48

#	Article	IF	CITATIONS
73	Modeling epigenetic modifications in renal development and disease with organoids and genome editing. DMM Disease Models and Mechanisms, $2018,11,.$	1.2	17
74	Kidney organoids for disease modeling. Oncotarget, 2018, 9, 12552-12553.	0.8	6
75	Corepressor SMRT is required to maintain Hox transcriptional memory during somitogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10381-10386.	3.3	10
76	Adenine base editing to mimic or correct disease mutations in rodents. Protein and Cell, 2018, 9, 752-753.	4.8	0
77	Forty years of IVF. Fertility and Sterility, 2018, 110, 185-324.e5.	0.5	211
78	At the Heart of Genome Editing and Cardiovascular Diseases. Circulation Research, 2018, 123, 221-223.	2.0	6
79	Ma et al. reply. Nature, 2018, 560, E10-E23.	13.7	37
80	Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell, 2017, 168, 473-486.e15.	13.5	397
81	CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein and Cell, 2017, 8, 365-378.	4.8	93
82	Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science, 2017, 356, 503-508.	6.0	68
83	Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart healing. Non-coding RNA Research, 2017, 2, 93-99.	2.4	5
84	Derivation of Pluripotent Stem Cells with InÂVivo Embryonic and Extraembryonic Potency. Cell, 2017, 169, 243-257.e25.	13.5	382
85	iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types. Stem Cell Reports, 2017, 8, 1086-1100.	2.3	147
86	Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics. Cell Stem Cell, 2017, 20, 505-517.e6.	5.2	33
87	Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 2017, 18, 180-191.	7.7	131
88	Regulation of Stem Cell Aging by Metabolism and Epigenetics. Cell Metabolism, 2017, 26, 460-474.	7.2	188
89	miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nature Cell Biology, 2017, 19, 1286-1296.	4.6	95
90	LRRK2 functions as a scaffolding kinase of ASK1-mediated neuronal cell death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2356-2368.	1.9	30

#	Article	IF	CITATIONS
91	Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548, 413-419.	13.7	781
92	Keeping the Rhythm while Changing the Lyrics: Circadian Biology in Aging. Cell, 2017, 170, 599-600.	13.5	19
93	InÂVivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell, 2017, 171, 1495-1507.e15.	13.5	334
94	Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Research, 2017, 27, 1178-1181.	5.7	40
95	Understanding the genetics behind complex human disease with large-scale iPSC collections. Genome Biology, 2017, 18, 135.	3.8	10
96	Analysis of transcription factors expressed at the anterior mouse limb bud. PLoS ONE, 2017, 12, e0175673.	1.1	13
97	Genome editing in human pluripotent stem cells: a systematic approach unrevealing pancreas development and disease. Stem Cell Investigation, 2016, 3, 76-76.	1.3	1
98	Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 2016, 540, 270-275.	13.7	264
99	InÂVivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell, 2016, 167, 1719-1733.e12.	13.5	609
100	Regenerative strategies for kidney engineering. FEBS Journal, 2016, 283, 3303-3324.	2.2	34
101	An overview of mammalian pluripotency. Development (Cambridge), 2016, 143, 1644-1648.	1.2	29
102	Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts. Biomaterials, 2016, 98, 64-78.	5.7	52
103	Cellular Metabolism and Induced Pluripotency. Cell, 2016, 166, 1371-1385.	13.5	133
104	Looking to the future following 10 years of induced pluripotent stem cell technologies. Nature Protocols, 2016, 11, 1579-1585.	5. 5	31
105	3D Culture Supports Long-Term Expansion of Mouse and Human Nephrogenic Progenitors. Cell Stem Cell, 2016, 19, 516-529.	5.2	153
106	In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540, 144-149.	13.7	906
107	Anti-Aging Strategies Based on Cellular Reprogramming. Trends in Molecular Medicine, 2016, 22, 725-738.	3.5	63
108	Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nature Communications, 2016, 7, 10743.	5.8	60

#	Article	IF	CITATIONS
109	Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nature Communications, 2016, 7, 11056.	5.8	68
110	Reprogramming strategies for the establishment of novel human cancer models. Cell Cycle, 2016, 15, 2393-2397.	1.3	3
111	Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein and Cell, 2016, 7, 210-221.	4.8	29
112	Stem Cells: A Renaissance in Human Biology Research. Cell, 2016, 165, 1572-1585.	13.5	87
113	The XEN of reprogramming. Cell Research, 2016, 26, 147-148.	5.7	3
114	Mending a Faltering Heart. Circulation Research, 2016, 118, 344-351.	2.0	21
115	Understanding the molecular mechanisms of reprogramming. Biochemical and Biophysical Research Communications, 2016, 473, 693-697.	1.0	13
116	The Molecular Harbingers of Early Mammalian Embryo Patterning. Cell, 2016, 165, 13-15.	13.5	11
117	Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts. Transgenic Research, 2016, 25, 375-384.	1.3	16
118	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
119	PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nature Communications, 2015, 6, 10068.	5.8	122
120	Roles for noncoding RNAs in cell-fate determination and regeneration. Nature Structural and Molecular Biology, 2015, 22, 2-4.	3.6	24
121	Regenerative medicine: targeted genome editing in vivo. Cell Research, 2015, 25, 271-272.	5.7	11
122	Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 2015, 6, 6413.	5.8	287
123	Identification of Novel Long Noncoding RNAs Underlying Vertebrate Cardiovascular Development. Circulation, 2015, 131, 1278-1290.	1.6	185
124	Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015, 524, 234-238.	13.7	166
125	A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 2015, 348, 1160-1163.	6.0	429
126	Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing. Cell, 2015, 161, 459-469.	13.5	245

#	Article	IF	CITATIONS
127	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	3.8	231
128	Holding your breath for longevity. Science, 2015, 347, 1319-1320.	6.0	13
129	Efficient Delivery and Functional Expression of Transfected Modified mRNA in Human Embryonic Stem Cell-derived Retinal Pigmented Epithelial Cells. Journal of Biological Chemistry, 2015, 290, 5661-5672.	1.6	22
130	An alternative pluripotent state confers interspecies chimaeric competency. Nature, 2015, 521, 316-321.	13.7	215
131	Brief Report: Oxidative Stress Mediates Cardiomyocyte Apoptosis in a Human Model of Danon Disease and Heart Failure. Stem Cells, 2015, 33, 2343-2350.	1.4	74
132	Dynamic Pluripotent Stem Cell States and Their Applications. Cell Stem Cell, 2015, 17, 509-525.	5.2	133
133	Hypoxia Drives Breast Tumor Malignancy through a TET–TNFα–p38–MAPK Signaling Axis. Cancer Research, 2015, 75, 3912-3924.	0.4	108
134	Metabolic exit from naive pluripotency. Nature Cell Biology, 2015, 17, 1519-1521.	4.6	19
135	A chemical approach to "rewire―neural progenitor cells. Cell Research, 2014, 24, 641-642.	5.7	2
136	A designer's guide to pluripotency. Nature, 2014, 516, 172-173.	13.7	12
137	Regenerative medicine: Transdifferentiation in vivo. Cell Research, 2014, 24, 141-142.	5.7	24
138	RE: Stem Cells Loaded with Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 107, dju368-dju368.	3.0	3
139	A recipe for targeted therapy in prostate cancer. Nature Reviews Urology, 2014, 11, 419-419.	1.9	3
140	Genetic rejuvenation of old muscle. Nature, 2014, 506, 304-305.	13.7	14
141	Gating pluripotency via nuclear pores. Trends in Molecular Medicine, 2014, 20, 1-7.	3.5	18
142	InÂVivo Activation of a Conserved MicroRNA Program Induces Mammalian Heart Regeneration. Cell Stem Cell, 2014, 15, 589-604.	5.2	178
143	Reprogramming by lineage specifiers: blurring the lines between pluripotency and differentiation. Current Opinion in Genetics and Development, 2014, 28, 57-63.	1.5	6
144	The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor–like cells. Nature Protocols, 2014, 9, 2693-2704.	5.5	86

#	Article	IF	CITATIONS
145	Conversion of Human Fibroblasts Into Monocyte-Like Progenitor Cells. Stem Cells, 2014, 32, 2923-2938.	1.4	40
146	Regeneration: making muscle from hPSCs. Cell Research, 2014, 24, 1159-1161.	5.7	6
147	A Novel Suppressive Effect of Alcohol Dehydrogenase 5 in Neuronal Differentiation. Journal of Biological Chemistry, 2014, 289, 20193-20199.	1.6	19
148	Targeted Gene Correction Minimally Impacts Whole-Genome Mutational Load in Human-Disease-Specific Induced Pluripotent Stem Cell Clones. Cell Stem Cell, 2014, 15, 31-36.	5.2	154
149	Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nature Communications, 2014, 5, 4330.	5.8	102
150	A Cut above the Rest: Targeted Genome Editing Technologies in Human Pluripotent Stem Cells. Journal of Biological Chemistry, 2014, 289, 4594-4599.	1.6	111
151	Worming toward Transdifferentiation, One (Epigenetic) Step at a Time. Developmental Cell, 2014, 30, 641-642.	3.1	1
152	Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein and Cell, 2014, 5, 48.	4.8	6
153	Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers. Cell Stem Cell, 2013, 13, 341-350.	5.2	137
154	Concealing cellular defects in pluripotent stem cells. Trends in Cell Biology, 2013, 23, 587-592.	3.6	15
155	The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 2012, 22, 168-177.	5.7	452
156	Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nature Medicine, 2011, 17, 1570-1576.	15.2	191
157	Rapid and Highly Efficient Generation of Induced Pluripotent Stem Cells from Human Umbilical Vein Endothelial Cells. PLoS ONE, 2011, 6, e19743.	1.1	44
158	Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature Reviews Molecular Cell Biology, 2011, 12, 79-89.	16.1	567
159	Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature, 2011, 472, 221-225.	13.7	510
160	A High Proliferation Rate Is Required for Cell Reprogramming and Maintenance of Human Embryonic Stem Cell Identity. Current Biology, 2011, 21, 45-52.	1.8	270
161	Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Research, 2011, 21, 1740-1744.	5.7	60
162	Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB Journal, 2009, 23, 3516-3525.	0.2	81

#	Article	IF	CITATIONS
163	Left–right axis determination. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 210-219.	6.6	8
164	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	9.4	1,275
165	Sall genes regulates limb patterning through modulation of regionâ€specific Hox activities in mice. FASEB Journal, 2008, 22, 230.6.	0.2	0
166	Patterning Mechanisms Controlling Vertebrate Limb Development. Annual Review of Cell and Developmental Biology, 2001, 17, 87-132.	4.0	368
167	Establishing a Left-Right Axis in the Embryo. IUBMB Life, 2000, 50, 1-11.	1.5	33
168	The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature, 1999, 401, 243-251.	13.7	213
169	Muscle development during vertebrate limb outgrowth. Cell and Tissue Research, 1999, 296, 131-139.	1.5	13
170	Dorsal cell fate specified by chick Lmxl during vertebrate limb development. Nature, 1995, 378, 716-720.	13.7	280
171	New <i>Life</i> is coming: committed to improving human health., 0,,.		0
172	Towards capturing of totipotency. Cell Research, 0, , .	5.7	O