
Juan Carlos Izpisua Belmonte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7447927/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nature Biotechnology, 2008, 26, 1276-1284.	9.4	1,275
2	In vivo genome editing via CRISPR/Cas9 mediated homology-independent targeted integration. Nature, 2016, 540, 144-149.	13.7	906
3	Correction of a pathogenic gene mutation in human embryos. Nature, 2017, 548, 413-419.	13.7	781
4	InÂVivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell, 2016, 167, 1719-1733.e12.	13.5	609
5	Dedifferentiation, transdifferentiation and reprogramming: three routes to regeneration. Nature Reviews Molecular Cell Biology, 2011, 12, 79-89.	16.1	567
6	Recapitulation of premature ageing with iPSCs from Hutchinson–Gilford progeria syndrome. Nature, 2011, 472, 221-225.	13.7	510
7	The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Research, 2012, 22, 168-177.	5.7	452
8	A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science, 2015, 348, 1160-1163.	6.0	429
9	Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell, 2017, 168, 473-486.e15.	13.5	397
10	Derivation of Pluripotent Stem Cells with InÂVivo Embryonic and Extraembryonic Potency. Cell, 2017, 169, 243-257.e25.	13.5	382
11	Patterning Mechanisms Controlling Vertebrate Limb Development. Annual Review of Cell and Developmental Biology, 2001, 17, 87-132.	4.0	368
12	InÂVivo Target Gene Activation via CRISPR/Cas9-Mediated Trans-epigenetic Modulation. Cell, 2017, 171, 1495-1507.e15.	13.5	334
13	Single-Cell Transcriptomic Atlas of Primate Ovarian Aging. Cell, 2020, 180, 585-600.e19.	13.5	306
14	Use of the CRISPR/Cas9 system as an intracellular defense against HIV-1 infection in human cells. Nature Communications, 2015, 6, 6413.	5.8	287
15	Dorsal cell fate specified by chick Lmxl during vertebrate limb development. Nature, 1995, 378, 716-720.	13.7	280
16	The ageing epigenome and itsÂrejuvenation. Nature Reviews Molecular Cell Biology, 2020, 21, 137-150.	16.1	276
17	A High Proliferation Rate Is Required for Cell Reprogramming and Maintenance of Human Embryonic Stem Cell Identity. Current Biology, 2011, 21, 45-52.	1.8	270
18	Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature, 2016, 540, 270-275.	13.7	264

#	Article	IF	CITATIONS
19	Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing. Cell, 2015, 161, 459-469.	13.5	245
20	Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nature Genetics, 2019, 51, 1380-1388.	9.4	236
21	Brains, Genes, and Primates. Neuron, 2015, 86, 617-631.	3.8	231
22	Generation of Human PSC-Derived Kidney Organoids with Patterned Nephron Segments and a De Novo Vascular Network. Cell Stem Cell, 2019, 25, 373-387.e9.	5.2	219
23	An alternative pluripotent state confers interspecies chimaeric competency. Nature, 2015, 521, 316-321.	13.7	215
24	The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature, 1999, 401, 243-251.	13.7	213
25	Forty years of IVF. Fertility and Sterility, 2018, 110, 185-324.e5.	0.5	211
26	Caloric Restriction Reprograms the Single-Cell Transcriptional Landscape of Rattus Norvegicus Aging. Cell, 2020, 180, 984-1001.e22.	13.5	206
27	Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells. Nature Materials, 2019, 18, 397-405.	13.3	201
28	Diseases in a dish: modeling human genetic disorders using induced pluripotent cells. Nature Medicine, 2011, 17, 1570-1576.	15.2	191
29	Regulation of Stem Cell Aging by Metabolism and Epigenetics. Cell Metabolism, 2017, 26, 460-474.	7.2	188
30	Identification of Novel Long Noncoding RNAs Underlying Vertebrate Cardiovascular Development. Circulation, 2015, 131, 1278-1290.	1.6	185
31	Efficient derivation of stable primed pluripotent embryonic stem cells from bovine blastocysts. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2090-2095.	3.3	181
32	A human circulating immune cell landscape in aging and COVID-19. Protein and Cell, 2020, 11, 740-770.	4.8	179
33	InÂVivo Activation of a Conserved MicroRNA Program Induces Mammalian Heart Regeneration. Cell Stem Cell, 2014, 15, 589-604.	5.2	178
34	Generation of Blastocyst-like Structures from Mouse Embryonic and Adult Cell Cultures. Cell, 2019, 179, 687-702.e18.	13.5	175
35	Metabolic rescue in pluripotent cells from patients with mtDNA disease. Nature, 2015, 524, 234-238.	13.7	166
36	Targeted Gene Correction Minimally Impacts Whole-Genome Mutational Load in Human-Disease-Specific Induced Pluripotent Stem Cell Clones, Cell Stem Cell, 2014, 15, 31-36	5.2	154

#	Article	IF	CITATIONS
37	3D Culture Supports Long-Term Expansion of Mouse and Human Nephrogenic Progenitors. Cell Stem Cell, 2016, 19, 516-529.	5.2	153
38	iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types. Stem Cell Reports, 2017, 8, 1086-1100.	2.3	147
39	A Single-Cell Transcriptomic Atlas of Human Skin Aging. Developmental Cell, 2021, 56, 383-397.e8.	3.1	145
40	Reprogramming of Human Fibroblasts to Pluripotency with Lineage Specifiers. Cell Stem Cell, 2013, 13, 341-350.	5.2	137
41	Dissecting primate early post-implantation development using long-term in vitro embryo culture. Science, 2019, 366, .	6.0	137
42	Dynamic Pluripotent Stem Cell States and Their Applications. Cell Stem Cell, 2015, 17, 509-525.	5.2	133
43	Cellular Metabolism and Induced Pluripotency. Cell, 2016, 166, 1371-1385.	13.5	133
44	Ground rules of the pluripotency gene regulatory network. Nature Reviews Genetics, 2017, 18, 180-191.	7.7	131
45	PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nature Communications, 2015, 6, 10068.	5.8	122
46	Single-dose CRISPR–Cas9 therapy extends lifespan of mice with Hutchinson–Gilford progeria syndrome. Nature Medicine, 2019, 25, 419-422.	15.2	113
47	A Cut above the Rest: Targeted Genome Editing Technologies in Human Pluripotent Stem Cells. Journal of Biological Chemistry, 2014, 289, 4594-4599.	1.6	111
48	Hypoxia Drives Breast Tumor Malignancy through a TET–TNFα–p38–MAPK Signaling Axis. Cancer Research, 2015, 75, 3912-3924.	0.4	108
49	Up-regulation of FOXD1 by YAP alleviates senescence and osteoarthritis. PLoS Biology, 2019, 17, e3000201.	2.6	104
50	Modelling Fanconi anemia pathogenesis and therapeutics using integration-free patient-derived iPSCs. Nature Communications, 2014, 5, 4330.	5.8	102
51	In vivo partial reprogramming alters age-associated molecular changes during physiological aging in mice. Nature Aging, 2022, 2, 243-253.	5.3	101
52	miR-25/93 mediates hypoxia-induced immunosuppression by repressing cGAS. Nature Cell Biology, 2017, 19, 1286-1296.	4.6	95
53	CRISPR/Cas9-mediated targeted gene correction in amyotrophic lateral sclerosis patient iPSCs. Protein and Cell, 2017, 8, 365-378.	4.8	93
54	In vivo genome editing via the HITI method as a tool for gene therapy. Journal of Human Genetics, 2018, 63, 157-164.	1.1	90

#	Article	IF	CITATIONS
55	Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Research, 2021, 31, 415-432.	5.7	88
56	Stem Cells: A Renaissance in Human Biology Research. Cell, 2016, 165, 1572-1585.	13.5	87
57	The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor–like cells. Nature Protocols, 2014, 9, 2693-2704.	5.5	86
58	Chimeric contribution of human extended pluripotent stem cells to monkey embryos exÂvivo. Cell, 2021, 184, 2020-2032.e14.	13.5	85
59	Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nature Communications, 2019, 10, 3329.	5.8	82
60	Compensatory growth mechanisms regulated by BMP and FGF signaling mediate liver regeneration in zebrafish after partial hepatectomy. FASEB Journal, 2009, 23, 3516-3525.	0.2	81
61	Deconstructing the pluripotency gene regulatory network. Nature Cell Biology, 2018, 20, 382-392.	4.6	79
62	A genome-wide CRISPR-based screen identifies <i>KAT7</i> as a driver of cellular senescence. Science Translational Medicine, 2021, 13, .	5.8	79
63	FOXO3-Engineered Human ESC-Derived Vascular Cells Promote Vascular Protection and Regeneration. Cell Stem Cell, 2019, 24, 447-461.e8.	5.2	78
64	Brief Report: Oxidative Stress Mediates Cardiomyocyte Apoptosis in a Human Model of Danon Disease and Heart Failure. Stem Cells, 2015, 33, 2343-2350.	1.4	74
65	Creating Patient-Specific Neural Cells for the InÂVitro Study of Brain Disorders. Stem Cell Reports, 2015, 5, 933-945.	2.3	72
66	Loss of MAX results in meiotic entry in mouse embryonic and germline stem cells. Nature Communications, 2016, 7, 11056.	5.8	68
67	Integration of CpG-free DNA induces de novo methylation of CpG islands in pluripotent stem cells. Science, 2017, 356, 503-508.	6.0	68
68	Single-cell omics in ageing: a young and growing field. Nature Metabolism, 2020, 2, 293-302.	5.1	67
69	Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Research, 2021, 31, 187-205.	5.7	67
70	Anti-Aging Strategies Based on Cellular Reprogramming. Trends in Molecular Medicine, 2016, 22, 725-738.	3.5	63
71	Efficient correction of hemoglobinopathy-causing mutations by homologous recombination in integration-free patient iPSCs. Cell Research, 2011, 21, 1740-1744.	5.7	60
72	Establishment of human iPSC-based models for the study and targeting of glioma initiating cells. Nature Communications, 2016, 7, 10743.	5.8	60

#	Article	IF	CITATIONS
73	Differential stem cell aging kinetics in Hutchinson-Gilford progeria syndrome and Werner syndrome. Protein and Cell, 2018, 9, 333-350.	4.8	56
74	Heterochronic parabiosis induces stem cell revitalization and systemic rejuvenation across aged tissues. Cell Stem Cell, 2022, 29, 990-1005.e10.	5.2	53
75	Myocardial commitment from human pluripotent stem cells: Rapid production of human heart grafts. Biomaterials, 2016, 98, 64-78.	5.7	52
76	Precise in vivo genome editing via single homology arm donor mediated intron-targeting gene integration for genetic disease correction. Cell Research, 2019, 29, 804-819.	5.7	51
77	Genome-wide R-loop Landscapes during Cell Differentiation and Reprogramming. Cell Reports, 2020, 32, 107870.	2.9	51
78	In vivo partial reprogramming of myofibers promotes muscle regeneration by remodeling the stem cell niche. Nature Communications, 2021, 12, 3094.	5.8	51
79	Cross-species metabolomic analysis identifies uridine as a potent regeneration promoting factor. Cell Discovery, 2022, 8, 6.	3.1	50
80	Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein and Cell, 2021, 12, 695-716.	4.8	49
81	Coordinated histone modifications and chromatin reorganization in a single cell revealed by FRET biosensors. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E11681-E11690.	3.3	48
82	Rapid and Highly Efficient Generation of Induced Pluripotent Stem Cells from Human Umbilical Vein Endothelial Cells. PLoS ONE, 2011, 6, e19743.	1.1	44
83	Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells. Protein and Cell, 2019, 10, 249-271.	4.8	41
84	InÂvivo partial cellular reprogramming enhances liver plasticity and regeneration. Cell Reports, 2022, 39, 110730.	2.9	41
85	Conversion of Human Fibroblasts Into Monocyte-Like Progenitor Cells. Stem Cells, 2014, 32, 2923-2938.	1.4	40
86	Genetic enhancement in cultured human adult stem cells conferred by a single nucleotide recoding. Cell Research, 2017, 27, 1178-1181.	5.7	40
87	A single-cell transcriptomic atlas of primate pancreatic islet aging. National Science Review, 2021, 8, nwaa127.	4.6	37
88	Ma et al. reply. Nature, 2018, 560, E10-E23.	13.7	37
89	Exosomes from antler stem cells alleviate mesenchymal stem cell senescence and osteoarthritis. Protein and Cell, 2022, 13, 220-226.	4.8	36
90	Destabilizing heterochromatin by APOE mediates senescence. Nature Aging, 2022, 2, 303-316.	5.3	36

#	Article	IF	CITATIONS
91	Regenerative strategies for kidney engineering. FEBS Journal, 2016, 283, 3303-3324.	2.2	34
92	Establishing a Left-Right Axis in the Embryo. IUBMB Life, 2000, 50, 1-11.	1.5	33
93	Aberrant DNA Methylation in Human iPSCs Associates with MYC-Binding Motifs in a Clone-Specific Manner Independent of Genetics. Cell Stem Cell, 2017, 20, 505-517.e6.	5.2	33
94	Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Developmental Cell, 2022, 57, 1347-1368.e12.	3.1	32
95	Looking to the future following 10 years of induced pluripotent stem cell technologies. Nature Protocols, 2016, 11, 1579-1585.	5.5	31
96	LRRK2 functions as a scaffolding kinase of ASK1-mediated neuronal cell death. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 2356-2368.	1.9	30
97	Cell surface GRP78 promotes stemness in normal and neoplastic cells. Scientific Reports, 2020, 10, 3474.	1.6	30
98	An overview of mammalian pluripotency. Development (Cambridge), 2016, 143, 1644-1648.	1.2	29
99	Modeling xeroderma pigmentosum associated neurological pathologies with patients-derived iPSCs. Protein and Cell, 2016, 7, 210-221.	4.8	29
100	FOXO3-engineered human mesenchymal progenitor cells efficiently promote cardiac repair after myocardial infarction. Protein and Cell, 2021, 12, 145-151.	4.8	27
101	Design Approaches for Generating Organ Constructs. Cell Stem Cell, 2019, 24, 877-894.	5.2	26
102	Regenerative medicine: Transdifferentiation in vivo. Cell Research, 2014, 24, 141-142.	5.7	24
103	Roles for noncoding RNAs in cell-fate determination and regeneration. Nature Structural and Molecular Biology, 2015, 22, 2-4.	3.6	24
104	A prevalent neglect of environmental control in mammalian cell culture calls for best practices. Nature Biomedical Engineering, 2021, 5, 787-792.	11.6	24
105	Efficient Delivery and Functional Expression of Transfected Modified mRNA in Human Embryonic Stem Cell-derived Retinal Pigmented Epithelial Cells. Journal of Biological Chemistry, 2015, 290, 5661-5672.	1.6	22
106	Mending a Faltering Heart. Circulation Research, 2016, 118, 344-351.	2.0	21
107	MiR-23~27~24–mediated control of humoral immunity reveals a TOX-driven regulatory circuit in follicular helper T cell differentiation. Science Advances, 2019, 5, eaaw1715.	4.7	21
108	Chemical combinations potentiate human pluripotent stem cell-derived 3D pancreatic progenitor clusters toward functional Î ² cells. Nature Communications, 2021, 12, 3330.	5.8	21

#	Article	IF	CITATIONS
109	Induced pluripotent stem cellâ€based modeling of mutant <scp>LRRK</scp> 2â€associated Parkinson's disease. European Journal of Neuroscience, 2019, 49, 561-589.	1.2	20
110	A Novel Suppressive Effect of Alcohol Dehydrogenase 5 in Neuronal Differentiation. Journal of Biological Chemistry, 2014, 289, 20193-20199.	1.6	19
111	Metabolic exit from naive pluripotency. Nature Cell Biology, 2015, 17, 1519-1521.	4.6	19
112	Keeping the Rhythm while Changing the Lyrics: Circadian Biology in Aging. Cell, 2017, 170, 599-600.	13.5	19
113	Gating pluripotency via nuclear pores. Trends in Molecular Medicine, 2014, 20, 1-7.	3.5	18
114	Modeling epigenetic modifications in renal development and disease with organoids and genome editing. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	17
115	Interspecies chimeric complementation for the generation of functional human tissues and organs in large animal hosts. Transgenic Research, 2016, 25, 375-384.	1.3	16
116	Simultaneous detection and mutation surveillance of SARS-CoV-2 and multiple respiratory viruses by rapid field-deployable sequencing. Med, 2021, 2, 689-700.e4.	2.2	16
117	Concealing cellular defects in pluripotent stem cells. Trends in Cell Biology, 2013, 23, 587-592.	3.6	15
118	Mitochondrial dynamics and metabolism in induced pluripotency. Experimental Gerontology, 2020, 133, 110870.	1.2	15
119	Genetic rejuvenation of old muscle. Nature, 2014, 506, 304-305.	13.7	14
120	OUP accepted manuscript. Nucleic Acids Research, 2022, , .	6.5	14
121	Muscle development during vertebrate limb outgrowth. Cell and Tissue Research, 1999, 296, 131-139.	1.5	13
122	Holding your breath for longevity. Science, 2015, 347, 1319-1320.	6.0	13
123	Understanding the molecular mechanisms of reprogramming. Biochemical and Biophysical Research Communications, 2016, 473, 693-697.	1.0	13
124	Generation of RRMS and PPMS specific iPSCs as a platform for modeling Multiple Sclerosis. Stem Cell Research, 2021, 53, 102319.	0.3	13
125	Analysis of transcription factors expressed at the anterior mouse limb bud. PLoS ONE, 2017, 12, e0175673.	1.1	13
126	A designer's guide to pluripotency. Nature, 2014, 516, 172-173.	13.7	12

#	Article	IF	CITATIONS
127	αKLOTHO and sTGFβR2 treatment counteract the osteoarthritic phenotype developed in a rat model. Protein and Cell, 2020, 11, 219-226.	4.8	12
128	Regenerative medicine: targeted genome editing in vivo. Cell Research, 2015, 25, 271-272.	5.7	11
129	The Molecular Harbingers of Early Mammalian Embryo Patterning. Cell, 2016, 165, 13-15.	13.5	11
130	Understanding the genetics behind complex human disease with large-scale iPSC collections. Genome Biology, 2017, 18, 135.	3.8	10
131	Corepressor SMRT is required to maintain Hox transcriptional memory during somitogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10381-10386.	3.3	10
132	Tailored chromatin modulation to promote tissue regeneration. Seminars in Cell and Developmental Biology, 2020, 97, 3-15.	2.3	10
133	OUP accepted manuscript. Stem Cells Translational Medicine, 2022, 11, 231-238.	1.6	10
134	Elixir of Life. Circulation Research, 2018, 122, 128-141.	2.0	9
135	Use of Customizable Nucleases for Gene Editing and Other Novel Applications. Genes, 2020, 11, 976.	1.0	9
136	Unlocking Tissue Regenerative Potential by Epigenetic Reprogramming. Cell Stem Cell, 2021, 28, 5-7.	5.2	9
137	Hyperthermia differentially affects specific human stem cells and their differentiated derivatives. Protein and Cell, 2022, 13, 615-622.	4.8	9
138	Left–right axis determination. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2009, 1, 210-219.	6.6	8
139	Reprogramming by lineage specifiers: blurring the lines between pluripotency and differentiation. Current Opinion in Genetics and Development, 2014, 28, 57-63.	1.5	6
140	Regeneration: making muscle from hPSCs. Cell Research, 2014, 24, 1159-1161.	5.7	6
141	Kidney organoids for disease modeling. Oncotarget, 2018, 9, 12552-12553.	0.8	6
142	At the Heart of Genome Editing and Cardiovascular Diseases. Circulation Research, 2018, 123, 221-223.	2.0	6
143	c-MYC Triggers Lipid Remodelling During Early Somatic Cell Reprogramming to Pluripotency. Stem Cell Reviews and Reports, 2021, 17, 2245-2261.	1.7	6
144	Direct conversion of human fibroblasts into retinal pigment epithelium-like cells by defined factors. Protein and Cell, 2014, 5, 48.	4.8	6

#	Article	IF	CITATIONS
145	Deciphering aging at three-dimensional genomic resolution. , 2022, 1, 100034.		6
146	Wiskott-Aldrich syndrome protein forms nuclear condensates and regulates alternative splicing. Nature Communications, 2022, 13, .	5.8	6
147	Non-coding microRNAs for cardiac regeneration: Exploring novel alternatives to induce heart healing. Non-coding RNA Research, 2017, 2, 93-99.	2.4	5
148	Time matters: Human blastoids resemble the sequence of blastocyst development. Cell, 2022, 185, 581-584.	13.5	5
149	Emerging role of RNA m6A modification in aging regulation. , 2022, 1, .		5
150	Mutations in foregut SOX2+ cells induce efficient proliferation via CXCR2 pathway. Protein and Cell, 2019, 10, 485-495.	4.8	4
151	Gene Editing in 3D Cultured Nephron Progenitor Cell Lines. Methods in Molecular Biology, 2019, 1926, 151-159.	0.4	4
152	A β-galactosidase kiss of death for senescent cells. Cell Research, 2020, 30, 556-557.	5.7	4
153	Expanding the Toolbox and Targets for Gene Editing. Trends in Molecular Medicine, 2021, 27, 203-206.	3.5	4
154	FOXM1 delays senescence and extends lifespan. Nature Aging, 2022, 2, 373-374.	5.3	4
155	RE: Stem Cells Loaded with Multimechanistic Oncolytic Herpes Simplex Virus Variants for Brain Tumor Therapy. Journal of the National Cancer Institute, 2014, 107, dju368-dju368.	3.0	3
156	A recipe for targeted therapy in prostate cancer. Nature Reviews Urology, 2014, 11, 419-419.	1.9	3
157	Reprogramming strategies for the establishment of novel human cancer models. Cell Cycle, 2016, 15, 2393-2397.	1.3	3
158	The XEN of reprogramming. Cell Research, 2016, 26, 147-148.	5.7	3
159	A chemical approach to "rewire―neural progenitor cells. Cell Research, 2014, 24, 641-642.	5.7	2
160	Development of de novo epithelialization method for treatment of cutaneous ulcers. Journal of Dermatological Science, 2019, 95, 8-12.	1.0	2
161	Myc Supports Self-Renewal of Basal Cells in the Esophageal Epithelium. Frontiers in Cell and Developmental Biology, 2022, 10, 786031.	1.8	2
162	Worming toward Transdifferentiation, One (Epigenetic) Step at a Time. Developmental Cell, 2014, 30, 641-642.	3.1	1

#	Article	IF	CITATIONS
163	Genome editing in human pluripotent stem cells: a systematic approach unrevealing pancreas development and disease. Stem Cell Investigation, 2016, 3, 76-76.	1.3	1
164	First progeria monkey model generated using base editor. Protein and Cell, 2020, 11, 862-865.	4.8	1
165	Age-related cardiopathies gene editing. Aging, 2019, 11, 1327-1328.	1.4	1
166	Transcriptomic profiling fuels the derivation of stable pig epiblast stem cells. Cell Research, 2022, , .	5.7	1
167	Adenine base editing to mimic or correct disease mutations in rodents. Protein and Cell, 2018, 9, 752-753.	4.8	0
168	Towards precise, safe genome editing. Cell Research, 2019, 29, 687-689.	5.7	0
169	Editors' Preamble to The Journal of Cardiovascular Aging. , 2021, 1, .		0
170	Sall genes regulates limb patterning through modulation of regionâ€specific Hox activities in mice. FASEB Journal, 2008, 22, 230.6.	0.2	0
171	New <i>Life</i> is coming: committed to improving human health. , 0, , .		Ο
172	Towards capturing of totipotency. Cell Research, 0, , .	5.7	0