Hanna Meyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7447005/publications.pdf Version: 2024-02-01

HANNA MEVED

#	Article	IF	CITATIONS
1	Potential of Airborne LiDAR Derived Vegetation Structure for the Prediction of Animal Species Richness at Mount Kilimanjaro. Remote Sensing, 2022, 14, 786.	1.8	1
2	Nearest neighbour distance matching <scp>Leaveâ€Oneâ€Out Crossâ€Validation</scp> for map validation. Methods in Ecology and Evolution, 2022, 13, 1304-1316.	2.2	15
3	Machine learning-based global maps of ecological variables and the challenge of assessing them. Nature Communications, 2022, 13, 2208.	5.8	69
4	Mapping the geogenic radon potential for Germany by machine learning. Science of the Total Environment, 2021, 754, 142291.	3.9	32
5	Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods in Ecology and Evolution, 2021, 12, 1620-1633.	2.2	139
6	A Machine Learning Based Downscaling Approach to Produce High Spatio-Temporal Resolution Land Surface Temperature of the Antarctic Dry Valleys from MODIS Data. Remote Sensing, 2021, 13, 4673.	1.8	2
7	Atmospheric moisture pathways of East Africa and implications for water recycling at Mount Kilimanjaro. International Journal of Climatology, 2020, 40, 4477-4496.	1.5	3
8	PioLaG: a piosphere landscape generator for savanna rangeland modelling. Landscape Ecology, 2020, 35, 2061-2082.	1.9	9
9	Importance of spatial predictor variable selection in machine learning applications – Moving from data reproduction to spatial prediction. Ecological Modelling, 2019, 411, 108815.	1.2	184
10	Hourly gridded air temperatures of South Africa derived from MSG SEVIRI. International Journal of Applied Earth Observation and Geoinformation, 2019, 78, 261-267.	1.4	9
11	Machine learning and multi-sensor based modelling of woody vegetation in the Molopo Area, South Africa. Remote Sensing of Environment, 2019, 222, 195-203.	4.6	37
12	Soil respiration and its temperature sensitivity (Q10): Rapid acquisition using mid-infrared spectroscopy. Geoderma, 2018, 323, 31-40.	2.3	22
13	Mapping fractional woody cover in semi-arid savannahs using multi-seasonal composites from Landsat data. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 139, 88-102.	4.9	46
14	Improving performance of spatio-temporal machine learning models using forward feature selection and target-oriented validation. Environmental Modelling and Software, 2018, 101, 1-9.	1.9	233
15	Multiple indicators yield diverging results on grazing degradation and climate controls across Tibetan pastures. Ecological Indicators, 2018, 93, 1199-1208.	2.6	17
16	Regional-scale controls on the spatial activity of rockfalls (Turtmann Valley, Swiss Alps) — A multivariate modeling approach. Geomorphology, 2017, 287, 29-45.	1.1	50
17	Revealing the potential of spectral and textural predictor variables in a neural network-based rainfall retrieval technique. Remote Sensing Letters, 2017, 8, 647-656.	0.6	8
18	From local spectral measurements to maps of vegetation cover and biomass on the Qinghai-Tibet-Plateau: Do we need hyperspectral information?. International Journal of Applied Earth Observation and Geoinformation, 2017, 55, 21-31.	1.4	33

HANNA MEYER

#	Article	IF	CITATIONS
19	Satellite-based high-resolution mapping of rainfall over southern Africa. Atmospheric Measurement Techniques, 2017, 10, 2009-2019.	1.2	11
20	Mapping Daily Air Temperature for Antarctica Based on MODIS LST. Remote Sensing, 2016, 8, 732.	1.8	89
21	Automatic classification of Google Earth images for a larger scale monitoring of bush encroachment in South Africa. International Journal of Applied Earth Observation and Geoinformation, 2016, 50, 89-94.	1.4	25
22	Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals. Atmospheric Research, 2016, 169, 424-433.	1.8	80
23	Spatio-temporal interpolation of soil water, temperature, and electrical conductivity in 3DÂ+ÂT: The Cook Agronomy Farm data set. Spatial Statistics, 2015, 14, 70-90.	0.9	64
24	Retrieval of grassland plant coverage on the Tibetan Plateau based on a multi-scale, multi-sensor and multi-method approach. Remote Sensing of Environment, 2015, 164, 197-207.	4.6	90
25	Projecting land-use and land-cover changes in a tropical mountain forest of Southern Ecuador. Journal of Land Use Science, 2014, 9, 1-33.	1.0	28
26	A hyperspectral indicator system for rangeland degradation on the Tibetan Plateau: A case study towards spaceborne monitoring. Ecological Indicators, 2014, 39, 54-64.	2.6	53
27	Measuring pasture degradation on the Qinghai-Tibet Plateau using hyperspectral dissimilarities and indices. , 2013, , .		2
28	Assessing pasture quality and degradation status using hyperspectral imaging: a case study from western Tibet. Proceedings of SPIE, 2013, , .	0.8	3
29	Environmental Changes Affecting the Andes of Ecuador. Ecological Studies, 2013, , 19-29.	0.4	22