
MarÃ-a Teresa Sanz Taberner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7446857/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rheological properties of emulsion templated oleogels based on xanthan gum and different structuring agents. Current Research in Food Science, 2022, 5, 564-570.	2.7	22
2	The role of oil concentration on the rheological properties, microstructure, and in vitro digestion of cellulose ether emulsions. Food Hydrocolloids, 2022, 131, 107793.	5.6	12
3	Development of Structured Sunflower Oil Systems for Decreasing Trans and Saturated Fatty Acid Content in Bakery Creams. Foods, 2021, 10, 505.	1.9	5
4	Thermorheological Characterization of Healthier Reduced-Fat Cocoa Butter Formulated by Substitution with a Hydroxypropyl Methylcellulose (HPMC)-Based Oleogel. Foods, 2021, 10, 793.	1.9	16
5	Optimization of Xanthan and Locust Bean Gum in a Gluten-Free Infant Biscuit Based on Rice-Chickpea Flour Using Response Surface Methodology. Foods, 2021, 10, 12.	1.9	12
6	Cellulose ether emulsions as fat source in cocoa creams: Thermorheological properties (flow and) Tj ETQq0 0 0 r	gBT /Over	loc <u>k</u> 10 Tf 50
-	Reduced-fat spreads based on anhydrous milk fat and cellulose ethers. Food Hydrocolloids, 2020, 99,	5.4	10

7	105330.	5.6	13
8	Influence of hydrocolloid type on structural breakdown of vegetable purees during in vitro digestion. International Journal of Food Science and Technology, 2020, 55, 1992-2001.	1.3	4
9	Cellulose ether oleogels obtained by emulsion-templated approach without additional thickeners. Food Hydrocolloids, 2020, 109, 106085.	5.6	47
10	Use of Milk Fat/Cellulose Ether Emulsions in Spreadable Creams and the Effect of In Vitro Digestion on Texture and Fat Digestibility. Foods, 2020, 9, 796.	1.9	3
11	Structural changes of filling creams after in vitro digestion. Application of hydrocolloid based emulsions as fat source. LWT - Food Science and Technology, 2019, 112, 108223.	2.5	8
12	Rheological and microstructural behaviour of xanthan gum and xanthan gum-Tween 80 emulsions during in vitro digestion. Food Hydrocolloids, 2019, 95, 454-461.	5.6	39
13	Effect of the addition of liquid whey from cheese making factory on the physicochemical properties of whey protein isolate gels made by high hydrostatic pressure. Journal of Food Science and Technology, 2019, 56, 245-252.	1.4	4
14	Functionality of low digestibility emulsions in cocoa creams. Structural changes during in vitro digestion and sensory perception. Journal of Functional Foods, 2019, 54, 146-153.	1.6	9
15	Effect of xanthan gum on palm oil inÂvitro digestion. Application in starch-based filling creams. Food Hydrocolloids, 2019, 86, 87-94.	5.6	11
16	Gluten-free biscuits based on composite rice–chickpea flour and xanthan gum. Food Science and Technology International, 2018, 24, 607-616.	1.1	29
17	Relationship between cellulose chemical substitution, structure and fat digestion in o/w emulsions. Food Hydrocolloids, 2017, 69, 76-85.	5.6	33
18	Oil-in-water emulsions stabilised by cellulose ethers: stability, structure and in vitro digestion. Food and Function, 2017, 8, 1547-1557.	2.1	46

#	Article	IF	CITATIONS
19	Structural changes in biscuits made with cellulose emulsions as fat replacers. Food Science and Technology International, 2017, 23, 480-489.	1.1	14
20	Creep–Recovery and Oscillatory Rheology of Flour-Based Systems. , 2017, , 277-295.		9
21	In vitro digestibility of highly concentrated methylcellulose O/W emulsions: rheological and structural changes. Food and Function, 2016, 7, 3933-3942.	2.1	15
22	Effect of thermally inhibited starches on the freezing and thermal stability of white sauces: Rheological and sensory properties. LWT - Food Science and Technology, 2016, 67, 82-88.	2.5	15
23	Cellulose ether emulsions as fat replacers in muffins: Rheological, thermal and textural properties. LWT - Food Science and Technology, 2015, 63, 1083-1090.	2.5	40
24	Use of healthier fats in biscuits (olive and sunflower oil): changing sensory features and their relation with consumers' liking. Food Research International, 2015, 69, 91-96.	2.9	25
25	Reversible thermal behaviour of vegetable oil cellulose ether emulsions as fat replacers. Influence of glycerol. Food Hydrocolloids, 2015, 46, 19-27.	5.6	16
26	Biscuit dough structural changes during heating: Influence of shortening and cellulose ether emulsions. LWT - Food Science and Technology, 2015, 62, 962-969.	2.5	14
27	New formulations of functional white sauces enriched with red sweet pepper: a rheological, microstructural and sensory study. European Food Research and Technology, 2015, 240, 1187-1202.	1.6	21
28	Influence of wheat flour subjected to different extrusion conditions on the rheological behaviour and thermal properties of batter systems for coating. LWT - Food Science and Technology, 2015, 64, 1309-1314.	2.5	20
29	Relevance of creep and oscillatory tests for understanding how cellulose emulsions function as fat replacers in biscuits. LWT - Food Science and Technology, 2015, 62, 640-646.	2.5	28
30	Comparison of different polyols as total sucrose replacers in muffins: Thermal, rheological, texture and acceptability properties. Food Hydrocolloids, 2014, 35, 1-8.	5.6	81
31	Effect of Fat on Mechanical and Acoustical Properties of Biscuits Related to Texture Properties Perceived by Consumers. Food and Bioprocess Technology, 2014, 7, 1725-1735.	2.6	14
32	Role of Fibre Morphology in Some Quality Features of Fibre-Enriched Biscuits. International Journal of Food Properties, 2014, 17, 163-178.	1.3	29
33	HPMC and inulin as fat replacers in biscuits: Sensory and instrumental evaluation. LWT - Food Science and Technology, 2014, 56, 494-501.	2.5	74
34	Native tapioca starch as a potential thickener for fruit fillings. Evaluation ofÂmixed models containing low-methoxyl pectin. Food Hydrocolloids, 2014, 35, 297-304.	5.6	22
35	Consumers' hedonic expectations and perception of the healthiness of biscuits made with olive oil or sunflower oil. Food Research International, 2014, 55, 197-206.	2.9	36
36	Formulating fruit fillings. Freezing and baking stability of a tapioca starch–pectin mixture model. Food Hydrocolloids, 2014, 40, 203-213.	5.6	25

#	Article	IF	CITATIONS
37	Establishing the function of proteins on the rheological and quality properties of rice based gluten free muffins. Food Hydrocolloids, 2014, 35, 150-158.	5.6	181
38	Inulin and Erythritol As Sucrose Replacers in Shortâ€dough Cookies: Sensory, Fracture, and Acoustic Properties. Journal of Food Science, 2013, 78, S777-84.	1.5	40
39	Study on Resistant Starch Functionality in Short Dough Biscuits by Oscillatory and Creep and Recovery Tests. Food and Bioprocess Technology, 2013, 6, 1312-1320.	2.6	18
40	Sunflower Oil–Water–Cellulose Ether Emulsions as Trans-Fatty Acid-Free Fat Replacers in Biscuits: Texture and Acceptability Study. Food and Bioprocess Technology, 2013, 6, 2389-2398.	2.6	44
41	Effect of Nutriose on Rheological, Textural and Sensorial Characteristics of Spanish Muffins. Food and Bioprocess Technology, 2013, 6, 1990-1999.	2.6	19
42	Understanding the Effect of Sugar and Sugar Replacement in Short Dough Biscuits. Food and Bioprocess Technology, 2013, 6, 3143-3154.	2.6	53
43	Instrumental assessment of the sensory quality of baked goods. , 2013, , 374-402.		6
44	Rheological, textural and sensorial properties of low-sucrose muffins reformulated with sucralose/polydextrose. LWT - Food Science and Technology, 2012, 45, 213-220.	2.5	103
45	Effect of using Erythritol as a Sucrose Replacer in Making Spanish Muffins Incorporating Xanthan Gum. Food and Bioprocess Technology, 2012, 5, 3203-3216.	2.6	33
46	BALANCING TEXTURE AND OTHER SENSORY FEATURES IN REDUCED FAT SHORTâ€ÐOUGH BISCUITS. Journal of Texture Studies, 2012, 43, 235-245.	1.1	48
47	Linear Viscoelastic Properties of Short Dough Enriched with Resistant Starch. Special Publication - Royal Society of Chemistry, 2012, , 385-388.	0.0	Ο
48	Functionality of Polyols as Sucrose Replacers in Spanish Muffins. Special Publication - Royal Society of Chemistry, 2012, , 369-373.	0.0	0
49	Performance of a resistant starch rich ingredient in the baking and eating quality of short-dough biscuits. LWT - Food Science and Technology, 2011, 44, 737-746.	2.5	119
50	Microwave Heating Effect on Rheology and Microstructure of White Sauces. Journal of Food Science, 2011, 76, E544-52.	1.5	8
51	Comparing microwave- and water bath-thawed starch-based sauces: Infrared thermography, rheology and microstructure. Food Hydrocolloids, 2011, 25, 1554-1562.	5.6	24
52	Effect of cooking time and ingredients on the performance of different starches in white sauces. European Food Research and Technology, 2010, 231, 395-405.	1.6	9
53	Resistant starch content and glucose release of different resistant starch commercial ingredients: effect of cooking conditions. European Food Research and Technology, 2010, 231, 655-662.	1.6	5
54	Performance of cellulose derivatives in deep-fried battered snacks: Oil barrier and crispy properties. Food Hydrocolloids, 2010, 24, 702-708.	5.6	42

#	Article	IF	CITATIONS
55	Dielectrical, microstructural and flow properties of sauce model systems based on starch, gums and salt. Journal of Food Engineering, 2010, 98, 34-43.	2.7	19
56	Sensory Properties Determined by Starch Type in White Sauces: Effects of Freeze/Thaw and Hydrocolloid Addition. Journal of Food Science, 2010, 75, S132-40.	1.5	12
57	Influence of corn starch type in the rheological properties of a white sauce after heating and freezing. Food Hydrocolloids, 2009, 23, 901-907.	5.6	45
58	Clean label starches as thickeners in white sauces. Shearing, heating and freeze/thaw stability. Food Hydrocolloids, 2009, 23, 2031-2037.	5.6	56
59	Improving effect of xanthan and locust bean gums on the freeze-thaw stability of white sauces made with different native starches. Food Hydrocolloids, 2009, 23, 2478-2484.	5.6	59
60	Evaluation of four types of resistant starch in muffins. II. Effects in texture, colour and consumer response. European Food Research and Technology, 2009, 229, 197-204.	1.6	118
61	Understanding potato chips crispy texture by simultaneous fracture and acoustic measurements, and sensory analysis. LWT - Food Science and Technology, 2009, 42, 763-767.	2.5	137
62	New functional fibre in milk puddings: Effect on sensory properties and consumers' acceptability. LWT - Food Science and Technology, 2009, 42, 710-716.	2.5	50
63	Performance of three different types of resistant starch in fried battered food. European Food Research and Technology, 2008, 227, 21-27.	1.6	9
64	Evaluation of four types of resistant starch in muffin baking performance and relationship with batter rheology. European Food Research and Technology, 2008, 227, 813-819.	1.6	47
65	Yogurt enrichment with functional asparagus fibre. Effect of fibre extraction method on rheological properties, colour, and sensory acceptance. European Food Research and Technology, 2008, 227, 1515-1521.	1.6	90
66	Performance of methyl cellulose in coating batters for fried products. Food Hydrocolloids, 2008, 22, 1062-1067.	5.6	25
67	Resistant starch (RS) in battered fried products: Functionality and high-fibre benefit. Food Hydrocolloids, 2008, 22, 543-549.	5.6	54
68	Muffins with resistant starch: Baking performance in relation to the rheological properties of the batter. Journal of Cereal Science, 2008, 47, 502-509.	1.8	128
69	Rheology of Batters Used in Frying. Contemporary Food Engineering, 2008, , 215-242.	0.2	0
70	Effect of Thickening Agent and Fat in Custard Microstructure Upon in vitro Enzymatic Digestion. Food Science and Technology International, 2007, 13, 381-388.	1.1	13
71	Characterization of crispness of French fries by fracture and acoustic measurements, effect of pre-frying and final frying times. Food Research International, 2007, 40, 63-70.	2.9	46
72	In vitro evaluation of genistein bioaccessibility from enriched custards. Food Hydrocolloids, 2007, 21, 203-211.	5.6	16

#	Article	IF	CITATIONS
73	Influence of the dosing process on the rheological and microstructural properties of a bakery product. Food Hydrocolloids, 2007, 21, 230-236.	5.6	32
74	Changes in colour and texture and their relationship with eating quality during storage of two different dessert bananas. Postharvest Biology and Technology, 2007, 43, 319-325.	2.9	85
75	Effect of thickening agent in the in vitro mouth, stomach and intestine release of tyrosol from enriched custards. Food Hydrocolloids, 2006, 20, 703-711.	5.6	31
76	Dynamic rheological characteristics of wheat flour–water doughs. Effect of adding NaCl, sucrose and yeast. Food Hydrocolloids, 2006, 20, 780-786.	5.6	101
77	Release, partitioning and stability of isoflavones from enriched custards during mouth, stomach and intestine in vitro simulations. Food Hydrocolloids, 2006, 20, 892-900.	5.6	32
78	Thermogelation properties of methylcellulose (MC) and their effect on a batter formula. Food Hydrocolloids, 2005, 19, 141-147.	5.6	68
79	Effect of the addition of different ingredients on the characteristics of a batter coating for fried seafood prepared without a pre-frying step. Food Hydrocolloids, 2005, 19, 703-708.	5.6	42
80	Influence of ingredients on the thermo-rheological behaviour of batters containing methylcellulose. Food Hydrocolloids, 2005, 19, 869-877.	5.6	37
81	Effect of concentration and temperature on properties of methylcellulose-added batters Application to battered, fried seafood. Food Hydrocolloids, 2004, 18, 127-131.	5.6	69
82	Innovative method for preparing a frozen, battered food without a prefrying step. Food Hydrocolloids, 2004, 18, 227-231.	5.6	38
83	Effect of the addition of dextrin or dried egg on the rheological and textural properties of batters for fried foods. Food Hydrocolloids, 2003, 17, 305-310.	5.6	65
84	Effect of Corn Flour, Salt, and Leavening on the Texture of Fried, Battered Squid Rings. Journal of Food Science, 2002, 67, 730-733.	1.5	33
85	Rheological properties of xanthan gum-gelatine spray-dried mixtures. Application in a custard-like formulation. European Food Research and Technology, 2001, 212, 208-212.	1.6	10