Regine von Klitzing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7446778/publications.pdf

Version: 2024-02-01

265 papers

10,388 citations

28190 55 h-index 51492

271 all docs

271 docs citations

271 times ranked

8782 citing authors

g-index

#	Article	IF	CITATIONS
1	Internal structure of polyelectrolyte multilayer assemblies. Physical Chemistry Chemical Physics, 2006, 8, 5012.	1.3	393
2	Complexes of surfactants with oppositely charged polymers at surfaces and in bulk. Advances in Colloid and Interface Science, 2010, 155, 32-49.	7.0	219
3	Influence of the ionic strength on the structure of polyelectrolyte films at the solid/liquid interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163, 63-70.	2.3	217
4	Disjoining pressure in thin liquid foam and emulsion filmsâ€"new concepts and perspectives. Journal of Physics Condensed Matter, 2003, 15, R1197-R1232.	0.7	214
5	Influence of Charge Density and Ionic Strength on the Multilayer Formation of Strong Polyelectrolytes. Langmuir, 2001, 17, 4471-4474.	1.6	212
6	Swelling Behavior of Polyelectrolyte Multilayers in Saturated Water Vapor. Macromolecules, 2004, 37, 7285-7289.	2.2	180
7	Hydration and internal properties of polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 14-29.	2.3	174
8	Temperature, pH, and Ionic Strength Induced Changes of the Swelling Behavior of PNIPAMâ [^] Poly(allylacetic acid) Copolymer Microgels. Langmuir, 2008, 24, 6300-6306.	1.6	173
9	Thermoresponsive surfaces by spin-coating of PNIPAM-co-PAA microgels: A combined AFM and ellipsometry study. Polymer, 2008, 49, 749-756.	1.8	164
10	Proton Concentration Profile in Ultrathin Polyelectrolyte Films. Langmuir, 1995, 11, 3554-3559.	1.6	149
11	A Realistic Diffusion Model for Ultrathin Polyelectrolyte Films. Macromolecules, 1996, 29, 6901-6906.	2.2	146
12	Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic–Inorganic Hybrid Adhesive. ACS Applied Materials & Interfaces, 2018, 10, 10471-10479.	4.0	142
13	Polymer/Surfactant Complexes at the Water/Air Interface:Â A Surface Tension and X-ray Reflectivity Study. Langmuir, 2000, 16, 3206-3213.	1.6	138
14	Packing Density Control in P(NIPAM-co-AAc) Microgel Monolayers: Effect of Surface Charge, pH, and Preparation Technique. Langmuir, 2008, 24, 12595-12602.	1.6	127
15	Charge Effects on the Formation of Multilayers Containing Strong Polyelectrolytes. Journal of Physical Chemistry B, 2003, 107, 5273-5280.	1.2	119
16	Effect of cross-linker density of P(NIPAM-co-AAc) microgels at solid surfaces on the swelling/shrinking behaviour and the Young's modulus. Colloid and Polymer Science, 2011, 289, 613-624.	1.0	117
17	The Effect of Co-Monomer Content on the Swelling/Shrinking and Mechanical Behaviour of Individually Adsorbed PNIPAM Microgel Particles. Polymers, 2011, 3, 1575-1590.	2.0	116
18	Competing mechanisms in polyelectrolyte multilayer formation and swelling: Polycation–polyanion pairing vs. polyelectrolyte–ion pairing. Current Opinion in Colloid and Interface Science, 2014, 19, 25-31.	3.4	116

#	Article	IF	CITATIONS
19	Responsive polyelectrolyte multilayers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 3-13.	2.3	112
20	Short range interactions in polyelectrolyte multilayers. Current Opinion in Colloid and Interface Science, 2004, 9, 158-162.	3.4	111
21	Behavior of Soap Films Stabilized by a Cationic Dimeric Surfactant. Langmuir, 1998, 14, 4251-4260.	1.6	103
22	Pure Protein Microspheres by Calcium Carbonate Templating. Angewandte Chemie - International Edition, 2010, 49, 9258-9261.	7.2	103
23	Specific Ion versus Electrostatic Effects on the Construction of Polyelectrolyte Multilayers. Langmuir, 2009, 25, 14061-14070.	1.6	102
24	Lightâ€Controlled Reversible Manipulation of Microgel Particle Size Using Azobenzeneâ€Containing Surfactant. Advanced Functional Materials, 2012, 22, 5000-5009.	7.8	97
25	Mixed monolayers of polyelectrolytes and surfactants at the air–water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 167, 189-197.	2.3	96
26	Surviving Structure in Colloidal Suspensions Squeezed from 3D to 2D. Physical Review Letters, 2008, 100, 118303.	2.9	95
27	Responsive Aqueous Foams. ChemPhysChem, 2015, 16, 66-75.	1.0	95
28	Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Physical Chemistry Chemical Physics, 2011, 13, 10318.	1.3	94
29	Forces in foam films containing polyelectrolyte and surfactant. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 131-140.	2.3	93
30	Lateral Mobility of Polyelectrolyte Chains in Multilayersâ€. Journal of Physical Chemistry B, 2007, 111, 8572-8581.	1.2	89
31	Control of number density and swelling/shrinking behavior of P(NIPAM–AAc) particles at solid surfaces. Journal of Materials Chemistry, 2010, 20, 3502.	6.7	87
32	Tunable Plasmon Coupling in Distance-Controlled Gold Nanoparticles. Langmuir, 2012, 28, 8862-8866.	1.6	85
33	Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing. International Journal of Biological Macromolecules, 2017, 105, 1161-1165.	3.6	79
34	Specific ion effects in physicochemical and biological systems: Simulations, theory and experiments. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 110-136.	2.3	78
35	Versatile Phase Transfer of Gold Nanoparticles from Aqueous Media to Different Organic Media. Chemistry - A European Journal, 2011, 17, 4648-4654.	1.7	78
36	Zinc induced polyelectrolyte coacervate bioadhesive and its transition to a self-healing hydrogel. RSC Advances, 2015, 5, 66871-66878.	1.7	78

#	Article	IF	Citations
37	Film stability control. Current Opinion in Colloid and Interface Science, 2002, 7, 42-49.	3.4	77
38	Oneâ€Step Formulation of Protein Microparticles with Tailored Properties: Hard Templating at Soft Conditions. Advanced Functional Materials, 2012, 22, 1914-1922.	7.8	77
39	Effect of polyelectrolyte/surfactant combinations on the stability of foam films. Soft Matter, 2010, 6, 849.	1.2	76
40	Two-Dimensional Aggregation and Semidilute Ordering in Cellulose Nanocrystals. Langmuir, 2016, 32, 442-450.	1.6	76
41	Effect of masker level on overshoot in running†and frozenâ€noise maskers. Journal of the Acoustical Society of America, 1994, 95, 2192-2201.	0.5	75
42	Polymers and surfactants at fluid interfaces studied with specular neutron reflectometry. Advances in Colloid and Interface Science, 2017, 247, 130-148.	7.0	75
43	Temperature-induced changes in polyelectrolyte films at the solid-liquid interface. Applied Physics A: Materials Science and Processing, 2002, 74, s519-s521.	1.1	73
44	Evidence of Surface Charge at the Air/Water Interface from Thin-Film Studies on Polyelectrolyte-Coated Substrates. Langmuir, 2005, 21, 4790-4793.	1.6	71
45	Effect of particle size and Debye length on order parameters of colloidal silica suspensions under confinement. Soft Matter, 2011, 7, 10899.	1.2	69
46	Steady-State Fluorescence Investigation of Pyrene-Labeled Poly(Acrylic Acid)s in Aqueous Solution and in the Presence of Sodium Dodecyl Sulfate. Langmuir, 2002, 18, 5600-5606.	1.6	66
47	Effects of Counterions and Co-ions on Foam Films Stabilized by Anionic Dodecyl Sulfate. Journal of Physical Chemistry B, 2010, 114, 15523-15529.	1.2	66
48	Dynamics of Linear Poly(<i>N</i> -isopropylacrylamide) in Water around the Phase Transition Investigated by Dielectric Relaxation Spectroscopy. Journal of Physical Chemistry B, 2014, 118, 3750-3759.	1.2	66
49	Structuring of poly(DADINIAC) chains in aqueous media: a comparison between bulk and free-standing film measurementsPreliminary results were published in Tenside, Surfactants, Detergents, 2000, 37, 338. They were also presented at some international conferences such as the IACIS in Bristol (23rdâ€"28th July 2000) and the LB9 in Potsdam (27th Augustâ€"1st September 2000) Physical Chemistry	1.3	65
50	Concentration dependent effects of urea binding to poly(N-isopropylacrylamide) brushes: a combined experimental and numerical study. Physical Chemistry Chemical Physics, 2016, 18, 5324-5335.	1.3	61
51	Salt-Induced Aggregation of Negatively Charged Gold Nanoparticles Confined in a Polymer Brush Matrix. Macromolecules, 2017, 50, 7333-7343.	2.2	61
52	Mesoscopic Ordering of Polyelectrolyte Chains in Foam Films:Â Role of Electrostatic Forces. Journal of Physical Chemistry B, 2000, 104, 5096-5101.	1.2	59
53	Polyelectrolyte Membranes. Advances in Polymer Science, 2004, , 177-210.	0.4	58
54	Halloysites Stabilized Emulsions for Hydroformylation of Long Chain Olefins. Advanced Materials Interfaces, 2017, 4, 1600435.	1.9	57

#	Article	IF	CITATIONS
55	Effect of Polymer Charge and Geometrical Confinement on Ion Distribution and the Structuring in Semidilute Polyelectrolyte Solutions:  Comparison between AFM and SAXS. Macromolecules, 2006, 39, 7364-7371.	2.2	56
56	Confinement of linear polymers, surfactants, and particles between interfaces. Advances in Colloid and Interface Science, 2010, 155, 19-31.	7.0	55
57	Loading of PNIPAM Based Microgels with CoFe ₂ O ₄ Nanoparticles and Their Magnetic Response in Bulk and at Surfaces. Journal of Physical Chemistry B, 2015, 119, 12129-12137.	1.2	55
58	Effect of interface modification on forces in foam films and wetting films. Advances in Colloid and Interface Science, 2005, 114-115, 253-266.	7.0	54
59	Electrical Detection of Self-Assembled Polyelectrolyte Multilayers by a Thin Film Resistor. Macromolecules, 2006, 39, 463-466.	2.2	54
60	Oscillatory Structural Forces Due to Nonionic Surfactant Micelles: Data by Colloidalâ^'Probe AFM vs Theory. Langmuir, 2010, 26, 915-923.	1.6	54
61	Brush/Gold Nanoparticle Hybrids: Effect of Grafting Density on the Particle Uptake and Distribution within Weak Polyelectrolyte Brushes. Langmuir, 2014, 30, 13033-13041.	1.6	54
62	Interaction of gold nanoparticles with thermoresponsive microgels: influence of the cross-linker density on optical properties. Physical Chemistry Chemical Physics, 2013, 15, 15623.	1.3	52
63	Photosensitive microgels containing azobenzene surfactants of different charges. Physical Chemistry Chemical Physics, 2017, 19, 108-117.	1.3	52
64	Surface Adsorption of Oppositely Charged SDS:C12TAB Mixtures and the Relation to Foam Film Formation and Stability. Journal of Physical Chemistry B, 2015, 119, 12877-12886.	1.2	51
65	Responsive Microgels at Surfaces and Interfaces. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1225-1250.	1.4	50
66	Impact of polymer shell on the formation and time evolution of nanoparticle–protein corona. Colloids and Surfaces B: Biointerfaces, 2013, 104, 213-220.	2.5	48
67	Surfactant and metal ion effects on the mechanical properties of alginate hydrogels. International Journal of Biological Macromolecules, 2016, 92, 220-224.	3.6	48
68	Formation and Dielectric Properties of Polyelectrolyte Multilayers Studied by a Silicon-on-Insulator Based Thin Film Resistor. Langmuir, 2007, 23, 4048-4052.	1.6	46
69	Polyelectrolyte Multilayers: Towards Single Cell Studies. Polymers, 2014, 6, 1502-1527.	2.0	46
70	About different types of water in swollen polyelectrolyte multilayers. Advances in Colloid and Interface Science, 2014, 207, 325-331.	7.0	46
71	Poly(<i>N</i> -isopropylacrylamide) Microgels under Alcoholic Intoxication: When a LCST Polymer Shows Swelling with Increasing Temperature. ACS Macro Letters, 2017, 6, 1042-1046.	2.3	45
72	A comparison of the network structure and inner dynamics of homogeneously and heterogeneously crosslinked PNIPAM microgels with high crosslinker content. Soft Matter, 2019, 15, 1053-1064.	1.2	45

#	Article	IF	CITATIONS
73	Immobilization of lipase B within micron-sized poly-N-isopropylacrylamide hydrogel particles by solvent exchange. Physical Chemistry Chemical Physics, 2012, 14, 9594.	1.3	43
74	Long-Range Interactions between Soft Colloidal Particles in Slitâ^'Pore Geometries. Journal of Physical Chemistry B, 2007, 111, 1296-1303.	1.2	42
75	Structuring of Polyelectrolyte (NaPSS) Solutions in Bulk and under Confinement as a Function of Concentration and Molecular Weight. Macromolecules, 2011, 44, 7782-7791.	2.2	42
76	Inner Structure of Adsorbed Ionic Microgel Particles. Langmuir, 2014, 30, 7168-7176.	1.6	42
77	Particle Stabilized Aqueous Foams at Different Length Scales: Synergy between Silica Particles and Alkylamines. Langmuir, 2015, 31, 1615-1622.	1.6	42
78	Swelling of Polyelectrolyte Multilayers: The Relation Between, Surface and Bulk Characteristics. Journal of Physical Chemistry B, 2015, 119, 11879-11886.	1.2	42
79	Comparison of different polymer-like structures in the confined geometry of foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 176, 109-116.	2.3	40
80	Foam Films Stabilized by Dodecyl Maltoside. 1. Film Thickness and Free Energy of Film Formation. Langmuir, 2004, 20, 6352-6358.	1.6	40
81	Reversible Activation of Diblock Copolymer Monolayers at the Interface by pH Modulation, 1:Â Lateral Chain Density and Conformation. Journal of Physical Chemistry B, 2006, 110, 9171-9176.	1.2	40
82	Stimuli-Responsive Polyelectrolyte Brushes As a Matrix for the Attachment of Gold Nanoparticles: The Effect of Brush Thickness on Particle Distribution. Polymers, 2014, 6, 1877-1896.	2.0	40
83	Interfacial properties of Quillaja saponins and its use for micellisation of lutein esters. Food Chemistry, 2016, 212, 35-42.	4.2	40
84	Biopolymers for dye removal via foam separation. Separation and Purification Technology, 2017, 188, 451-457.	3.9	40
85	Structuring of colloidal suspensions confined between a silica microsphere and an air bubble. Soft Matter, 2011, 7, 5329.	1.2	39
86	Nanomechanics and Nanorheology of Microgels at Interfaces. Polymers, 2018, 10, 978.	2.0	39
87	GelTouch., 2015,,.		39
88	Tuning of Foam Film Thickness by Different (Poly)electrolyte/Surfactant Combinationsâ€. Journal of Physical Chemistry B, 2003, 107, 8152-8157.	1.2	38
89	No Charge Reversal at Foam Film Surfaces after Addition of Oppositely Charged Polyelectrolytes?. Journal of Physical Chemistry B, 2009, 113, 7986-7990.	1.2	38
90	A New Multiresponsive Drug Delivery System using Smart Nanogels. ChemPhysChem, 2013, 14, 2833-2840.	1.0	38

#	Article	IF	Citations
91	Photoresponsive self-assemblies based on fatty acids. Chemical Communications, 2015, 51, 2907-2910.	2.2	38
92	Thermoresponsive PDMAEMA Brushes: Effect of Gold Nanoparticle Deposition. Journal of Physical Chemistry B, 2015, 119, 10348-10358.	1.2	38
93	Unveiling the Dynamics of Self-Assembled Layers of Thin Films of Poly(vinyl methyl ether) (PVME) by Nanosized Relaxation Spectroscopy. ACS Applied Materials & Samp; Interfaces, 2017, 9, 7535-7546.	4.0	38
94	Evidence for polymer-like structures in the single phase region of a dodecane/C12E5/water microemulsion: a dynamic light scattering study. Physica A: Statistical Mechanics and Its Applications, 2000, 283, 349-358.	1.2	37
95	Stratification of Foam Films Containing Polyelectrolytes. Influence of the Polymer Backbone's Rigidity. Journal of Physical Chemistry B, 2009, 113, 3972-3980.	1.2	37
96	Negative charges at the air/water interface and their consequences for aqueous wetting films containing surfactants. Faraday Discussions, 2009, 141, 41-53.	1.6	37
97	Using Hydrogel Microparticles To Transfer Hydrophilic Nanoparticles and Enzymes to Organic Media via Stepwise Solvent Exchange. Langmuir, 2010, 26, 12980-12987.	1.6	37
98	Growth behaviour and mechanical properties of PLL/HA multilayer films studied by AFM. Beilstein Journal of Nanotechnology, 2012, 3, 778-788.	1.5	37
99	Foam Films from Oppositely Charged Polyelectolyte/Surfactant Mixtures: Effect of Polyelectrolyte and Surfactant Hydrophobicity on Film Stability. Langmuir, 2010, 26, 9321-9327.	1.6	36
100	The dielectric signature of poly(N-isopropylacrylamide) microgels at the volume phase transition: dependence on the crosslinking density. Soft Matter, 2013, 9, 4464.	1.2	36
101	Effect of Ionic Strength and Layer Number on Swelling of Polyelectrolyte Multilayers in Water Vapour. Soft Materials, 2013, 11, 157-164.	0.8	36
102	Temperature effect on the build-up of exponentially growing polyelectrolyte multilayers. An exponential-to-linear transition point. Physical Chemistry Chemical Physics, 2016, 18, 7866-7874.	1.3	35
103	Impact of surface charges on the solvation forces in confined colloidal solutions. Journal of Chemical Physics, 2009, 131, 154702.	1.2	34
104	Immobilization of Water-Soluble HRP within Poly- <i>N</i> i>isopropylacrylamide Microgel Particles for Use in Organic Media. Langmuir, 2013, 29, 16002-16009.	1.6	34
105	Influence of Nanoparticles and Drop Size Distributions on the Rheology of w/o Pickering Emulsions. Chemie-Ingenieur-Technik, 2016, 88, 1815-1826.	0.4	34
106	Stability of Foam Films of Oppositely Charged Polyelectrolyte/Surfactant Mixtures: Effect of Isoelectric Point. Journal of Physical Chemistry B, 2011, 115, 14475-14483.	1.2	33
107	lon distribution in dry polyelectrolyte multilayers: a neutron reflectometry study. Soft Matter, 2018, 14, 1699-1708.	1.2	32
108	Asymptotic structure of charged colloids between two and three dimensions: the influence of salt. Journal of Physics Condensed Matter, 2008, 20, 494232.	0.7	31

#	Article	IF	Citations
109	Effect of polyelectrolytes on (de)stability of liquid foam films. Soft Matter, 2014, 10, 6903-6916.	1.2	31
110	Reversible Activation of Diblock Copolymer Monolayers at the Interface by pH Modulation, 2:Â Membrane Interactions at the Solid/Liquid Interface. Journal of Physical Chemistry B, 2006, 110, 9177-9182.	1.2	30
111	Correlation between specific ion adsorption at the air/water interface and long–range interactions in colloidal systems. Soft Matter, 2011, 7, 2936.	1.2	30
112	Probing the phase transition of aqueous solutions of linear low molecular weight poly(N-isopropylacrylamide) by dielectric spectroscopy. Soft Matter, 2012, 8, 12116.	1.2	30
113	Microgels at the Water/Oil Interface: In Situ Observation of Structural Aging and Two-Dimensional Magnetic Bead Microrheology. Langmuir, 2016, 32, 712-722.	1.6	30
114	Combined Cononsolvency and Temperature Effects on Adsorbed PNIPAM Microgels. Langmuir, 2017, 33, 14269-14277.	1.6	30
115	Tailoring PNIPAM hydrogels for large temperature-triggered changes in mechanical properties. Colloid and Polymer Science, 2019, 297, 633-640.	1.0	30
116	The effect of polymer charge density and charge distribution on the formation of multilayers. Journal of Physics Condensed Matter, 2003, 15, S213-S218.	0.7	29
117	Orientation-Controlled Electrocatalytic Efficiency of an Adsorbed Oxygen-Tolerant Hydrogenase. PLoS ONE, 2015, 10, e0143101.	1.1	29
118	Water Contact Angle On Polyelectrolyteâ€Coated Surfaces: Effects of Film Swelling and Droplet Evaporation. Soft Materials, 2007, 5, 61-73.	0.8	28
119	Polyelectrolytes in thin liquid films. Current Opinion in Colloid and Interface Science, 2010, 15, 303-314.	3.4	28
120	Short versus long chain polyelectrolyte multilayers: a direct comparison of self-assembly and structural properties. Physical Chemistry Chemical Physics, 2014, 16, 21988-21998.	1.3	28
121	Macroscopic and Microscopic Elasticity of Heterogeneous Polymer Gels. ACS Macro Letters, 2015, 4, 698-703.	2.3	28
122	Structure and Rheology of Microgel Monolayers at the Water/Oil Interface. Macromolecules, 2017, 50, 3680-3689.	2.2	28
123	Stability of aqueous foam films and foams containing polymers: Discrepancies between different length scales. Current Opinion in Colloid and Interface Science, 2020, 50, 101379.	3.4	28
124	Charged silica suspensions as model materials for liquids in confined geometries. Soft Matter, 2010, 6, 2330.	1.2	26
125	Adhesion Property Profiles of Supported Thin Polymer Films. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6300-6306.	4.0	26
126	On the structure of biocompatible, thermoresponsive poly(ethyleneÂglycol) microgels. Polymer, 2014, 55, 6717-6724.	1.8	26

#	Article	IF	Citations
127	Influence of the cross-linker content on adsorbed functionalised microgel coatings. Polymer, 2019, 169, 29-35.	1.8	26
128	The impact of the cononsolvency effect on poly (N-isopropylacrylamide) based microgels at interfaces. Colloid and Polymer Science, 2014, 292, 2439-2452.	1.0	25
129	Temperature-induced molecular transport through polymer multilayers coated with PNIPAM microgels. Physical Chemistry Chemical Physics, 2015, 17, 12771-12777.	1.3	25
130	Distribution of CoFe ₂ O ₄ Nanoparticles Inside PNIPAM-Based Microgels of Different Cross-linker Distributions. Journal of Physical Chemistry B, 2019, 123, 2405-2413.	1.2	25
131	Engineered Ovalbumin Nanoparticles for Cancer Immunotherapy. Advanced Therapeutics, 2020, 3, 2000100.	1.6	25
132	Microgels at droplet interfaces of water-in-oil emulsionsâ€"challenges and progress. Current Opinion in Colloid and Interface Science, 2022, 58, 101561.	3.4	25
133	Transport through ultrathin polyelectrolyte films. Thin Solid Films, 1996, 284-285, 352-356.	0.8	24
134	Effect of pH, co-monomer content, and surfactant structure on the swelling behavior of microgel-azobenzene-containing surfactant complex. Polymer, 2014, 55, 6513-6518.	1.8	24
135	IR-light triggered drug delivery from micron-sized polymer biocoatings. Journal of Controlled Release, 2010, 148, e70-e71.	4.8	22
136	Polymer Brush/Metal Nanoparticle Hybrids for Optical Sensor Applications: from Self-Assembly to Tailored Functions and Nanoengineering. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1089-1117.	1.4	22
137	Surface Adsorption of Oppositely Charged C14TAB-PAMPS Mixtures at the Air/Water Interface and the Impact on Foam Film Stability. Journal of Physical Chemistry B, 2015, 119, 348-358.	1.2	22
138	Multiscaling Approach for Non-Destructive Adhesion Studies of Metal/Polymer Composites. ACS Applied Materials & Description (2015), 7, 16247-16256.	4.0	22
139	Construction of Compact Polyelectrolyte Multilayers Inspired by Marine Mussel: Effects of Salt Concentration and pH As Observed by QCM-D and AFM. Langmuir, 2016, 32, 3365-3374.	1.6	22
140	Communication: Light driven remote control of microgels' size in the presence of photosensitive surfactant: Complete phase diagram. Journal of Chemical Physics, 2017, 147, 031101.	1.2	22
141	Cooling-Triggered Release from Mesoporous Poly(<i>N</i> -isopropylacrylamide) Microgels at Physiological Conditions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 57401-57409.	4.0	22
142	Recent progress in measurements of oscillatory forces and liquid properties under confinement. Current Opinion in Colloid and Interface Science, 2020, 47, 137-152.	3.4	22
143	Temperature Response of PNIPAM Derivatives at Planar Surfaces: Comparison between Polyelectrolyte Multilayers and Adsorbed Microgels. ChemPhysChem, 2010, 11, 3571-3579.	1.0	21
144	Oscillatory Forces of Nanoparticle Suspensions Confined between Rough Surfaces Modified with Polyelectrolytes via the Layer-by-Layer Technique. Langmuir, 2012, 28, 6313-6321.	1.6	21

#	Article	IF	Citations
145	Uptake of pH-Sensitive Gold Nanoparticles in Strong Polyelectrolyte Brushes. Polymers, 2016, 8, 134.	2.0	21
146	Effect of gold nanoparticle hydrophobicity on thermally induced color change of PNIPAM brush/gold nanoparticle hybrids. Polymer, 2016, 98, 454-463.	1.8	21
147	Fluorescence Spectroscopy on Polyelectrolyte Free Standing Films. Macromolecules, 2002, 35, 2861-2864.	2.2	20
148	Interactions across liquid thin films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 303, 97-109.	2.3	20
149	Effects of oppositely charged surfactants on the stability of foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 382, 165-173.	2.3	20
150	Bulk Phase and Surface Dynamics of PEG Microgel Particles. Macromolecules, 2015, 48, 5807-5815.	2.2	20
151	Tuning Pickering Emulsions for Optimal Reaction and Filtration Conditions. Chemie-Ingenieur-Technik, 2016, 88, 1827-1832.	0.4	20
152	Hydration and Solvent Exchange Induced Swelling and Deswelling of Homogeneous Poly(<i>N</i> -isopropylacrylamide) Microgel Thin Films. Langmuir, 2019, 35, 16341-16352.	1.6	20
153	Ethylene Glycol-Based Microgels at Solid Surfaces: Swelling Behavior and Control of Particle Number Density. Langmuir, 2015, 31, 2202-2210.	1.6	19
154	Inner structure and dynamics of microgels with low and medium crosslinker content prepared <i>via</i> surfactant-free precipitation polymerization and continuous monomer feeding approach. Soft Matter, 2019, 15, 6536-6546.	1.2	19
155	Bridging the gap between two different scaling laws for structuring of liquids under geometrical confinement. Advances in Colloid and Interface Science, 2019, 269, 270-276.	7.0	19
156	Synergistic Effects of a Rhodium Catalyst on Particle-Stabilized Pickering Emulsions for the Hydroformylation of a Long-Chain Olefin. Industrial & Engineering Chemistry Research, 2019, 58, 2524-2536.	1.8	19
157	New structural approach to rationalize the foam film stability of oppositely charged polyelectrolyte/surfactant mixtures. Chemical Communications, 2020, 56, 952-955.	2.2	19
158	Hemocompatibility of soft hydrophobic poly(n-butyl acrylate) networks with elastic moduli adapted to the elasticity of human arteries. Clinical Hemorheology and Microcirculation, 2011, 49, 375-390.	0.9	18
159	Smart Foams: New Perspectives Towards Responsive Composite Materials. Angewandte Chemie - International Edition, 2011, 50, 11290-11292.	7.2	18
160	Characteristics of Stable Pickering Emulsions under Process Conditions. Chemie-Ingenieur-Technik, 2016, 88, 1806-1814.	0.4	18
161	Temperature responsive behavior of polymer brush/polyelectrolyte multilayer composites. Soft Matter, 2016, 12, 1176-1183.	1.2	18
162	Core–Shell–Corona Silica Hybrid Nanoparticles Templated by Spherical Polyelectrolyte Brushes: A Study by Small Angle X-ray Scattering. Langmuir, 2017, 33, 9857-9865.	1.6	17

#	Article	IF	Citations
163	DLS Setup for in Situ Measurements of Photoinduced Size Changes of Microgel-Based Hybrid Particles. Langmuir, 2018, 34, 3597-3603.	1.6	17
164	Ion Distribution in Polyelectrolyte Multilayers with Standing-Wave X-ray Fluorescence. Journal of Physical Chemistry B, 2007, 111, 4036-4042.	1.2	16
165	Interaction forces between silica surfaces in cationic surfactant solutions: An atomic force microscopy study. Journal of Colloid and Interface Science, 2013, 402, 19-26.	5.0	16
166	Thermal and corrosion (in)stability of polyamide 6 studied by broadband dielectric spectroscopy. Polymer, 2015, 75, 34-43.	1.8	16
167	Self-Propulsion of Janus Particles near a Brush-Functionalized Substrate. Langmuir, 2020, 36, 7775-7780.	1.6	16
168	The Effect of Temperature Treatment on the Structure of Polyelectrolyte Multilayers. Polymers, 2016, 8, 120.	2.0	15
169	Decoupling of Dynamic and Thermal Glass Transition in Thin Films of a PVME/PS Blend. ACS Macro Letters, 2017, 6, 1156-1161.	2.3	15
170	Making strong polyelectrolyte brushes pH-sensitive by incorporation of gold nanoparticles. Soft Matter, 2018, 14, 4029-4039.	1.2	15
171	Looking inside Poly(<i>N</i> -isopropylacrylamide) Microgels: Nanomechanics and Dynamics at Solid–Liquid Interfaces. ACS Applied Polymer Materials, 2021, 3, 976-985.	2.0	15
172	Temperature Controlled Activity of Lipase B from <i>Candida Antarctica</i> after Immobilization within p-NIPAM Microgel Particles. Zeitschrift Fur Physikalische Chemie, 2012, 226, 749-759.	1.4	14
173	Scanning of Silicon Wafers in Contact with Aqueous CTAB Solutions below the CMC. Langmuir, 2012, 28, 3360-3368.	1.6	14
174	Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions. Journal of Colloid and Interface Science, 2016, 471, 118-126.	5.0	14
175	Surface adsorption of sulfonated poly(phenylene sulfone)/C14TAB mixtures and its correlation with foam film stability. Physical Chemistry Chemical Physics, 2016, 18, 18414-18423.	1.3	14
176	Water Uptake of Polyelectrolyte Multilayers Including Water Condensation in Voids. Langmuir, 2018, 34, 11518-11525.	1.6	14
177	Oil-in-Water Pickering Emulsions Stabilized by Halloysite Clay Nanotubes Toward Efficient Filterability. ACS Applied Nano Materials, 2020, 3, 11743-11751.	2.4	14
178	Interactions between polyelectrolyte brushes in free-standing liquid films: influence of ionic strength., 2001,, 195-199.		14
179	Scaling of layer spacing of charged particles under slit-pore confinement: an effect of concentration or of effective particle diameter?. Journal of Physics Condensed Matter, 2012, 24, 464125.	0.7	13
180	Stick-Slip Mechanisms at the Nanoscale. Soft Materials, 2014, 12, S106-S114.	0.8	13

#	Article	IF	CITATIONS
181	Layer-by-Layer Formation of Oligoelectrolyte Multilayers: A Combined Experimental and Computational Study. Soft Materials, 2014, 12, S14-S21.	0.8	13
182	Insights into Extended Structures and Their Driving Force: Influence of Salt on Polyelectrolyte/Surfactant Mixtures at the Air/Water Interface. ACS Applied Materials & Samp; Interfaces, 2022, 14, 27347-27359.	4.0	13
183	Spatial Distribution of Polyelectrolytes in Thin Free-Standing Aqueous Films Resolved with Fluorescence Spectroscopy. Journal of Physical Chemistry C, 2007, 111, 5726-5734.	1.5	12
184	lon specific effects in foam films. Current Opinion in Colloid and Interface Science, 2015, 20, 124-129.	3.4	12
185	Silica nanoparticle suspensions under confinement of thin liquid films. Journal of Colloid and Interface Science, 2015, 449, 522-529.	5.0	12
186	Sugar Surfactant Based Microemulsions at Solid Surfaces: Influence of the Oil Type and Surface Polarity. Langmuir, 2016, 32, 11928-11938.	1.6	12
187	The internal structure of PMETAC brush/gold nanoparticle composites: a neutron and X-ray reflectivity study. Physical Chemistry Chemical Physics, 2017, 19, 30636-30646.	1.3	12
188	Oddâ€even effect during layerâ€byâ€layer assembly of polyelectrolytes inspired by marine mussel. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 245-255.	2.4	12
189	A simple extension of the commonly used fitting equation for oscillatory structural forces in case of silica nanoparticle suspensions. Beilstein Journal of Nanotechnology, 2018, 9, 1095-1107.	1.5	12
190	Influence of particle type and concentration on the ultrafiltration behavior of nanoparticle stabilized Pickering emulsions and suspensions. Separation and Purification Technology, 2020, 252, 117457.	3.9	12
191	Flexible Sample Environment for the Investigation of Soft Matter at the European Spallation Source: Part Ilâ€"The GISANS Setup. Applied Sciences (Switzerland), 2021, 11, 4036.	1.3	12
192	Shape and Structure Formation of Mixed Nonionic–Anionic Surfactant Micelles. Molecules, 2021, 26, 4136.	1.7	12
193	Comment on "Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:  Effect of Electrolyte―and Subsequent Criticism. Langmuir, 2007, 23, 12457-12460.	1.6	11
194	Poly-NIPAM Microgels with Different Cross-Linker Densities. , 2013, , 63-76.		11
195	Swelling Behavior of Composite Systems: Mutual Effects between Polyelectrolyte Brushes and Multilayers. Macromolecules, 2018, 51, 2996-3005.	2.2	11
196	Grazing incidence SANS and reflectometry combined with simulation of adsorbed microgel particles. Physica B: Condensed Matter, 2018, 551, 172-178.	1.3	11
197	Multiphasic aqueous hydroformylation of 1-alkenes with micelle-like polymer particles as phase transfer agents. RSC Advances, 2018, 8, 23332-23338.	1.7	11
198	Visualization of Acoustic Energy Absorption in Confined Aqueous Solutions by PNIPAM Microgels: Effects of Bulk Viscosity. Langmuir, 2021, 37, 5854-5863.	1.6	11

#	Article	IF	Citations
199	Effect of Molecular Architecture on the Polyelectrolyte Structuring under Confinement. Macromolecules, 2012, 45, 3168-3176.	2.2	10
200	Tuning Interfacial Properties and Colloidal Behavior of Hybrid Nanoparticles by Controlling the Polymer Precursor. Macromolecular Chemistry and Physics, 2012, 213, 2412-2419.	1.1	10
201	Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions. Journal of Colloid and Interface Science, 2018, 513, 638-646.	5.0	10
202	One-step procedure for the preparation of functional polysaccharide/fatty acid multilayered coatings. Communications Chemistry, 2019, 2, .	2.0	10
203	From macroscopic mechanics to cell-effective stiffness within highly aligned macroporous collagen scaffolds. Materials Science and Engineering C, 2019, 103, 109760.	3.8	10
204	The quantitative impact of fluid <i>vs.</i> solid interfaces on the catalytic performance of pickering emulsions. Physical Chemistry Chemical Physics, 2021, 23, 2355-2367.	1.3	10
205	Exploring water in oil emulsions simultaneously stabilized by solid hydrophobic silica nanospheres and hydrophilic soft PNIPAM microgel. Soft Matter, 2021, 17, 8258-8268.	1.2	10
206	Visualization of Realâ€Time Degradation of pHâ€Responsive Polyglycerol Nanogels via Atomic Force Microscopy. Macromolecular Rapid Communications, 2014, 35, 2018-2022.	2.0	9
207	Transport processes at single droplets in micellar liquid/liquid systems. AICHE Journal, 2015, 61, 1092-1104.	1.8	9
208	Evolution of Size and Structure during the Polymerization Process: A SANS Study on EG-Based Microgels. Macromolecules, 2015, 48, 4901-4909.	2.2	9
209	Separation of Storage and Loss Modulus of Polyelectrolyte Multilayers on a Nanoscale: A Dynamic AFM Study. Langmuir, 2016, 32, 10505-10512.	1.6	9
210	Verteilungsgleichgewichte von Liganden in mizellaren Lösungsmittelsystemen. Chemie-Ingenieur-Technik, 2016, 88, 119-127.	0.4	9
211	Mass Transfer and Drop Size Distributions in Reactive Nanoparticleâ€ 5 tabilized Multiphase Systems. Chemie-Ingenieur-Technik, 2017, 89, 1561-1573.	0.4	9
212	Gold nanoparticle distribution in polyelectrolyte brushes loaded at different pH conditions. Journal of Chemical Physics, 2018, 149, 163322.	1.2	9
213	Viscosity of Polyelectrolytes Solutions in Nanofilms. Langmuir, 2010, 26, 7819-7823.	1.6	8
214	Grazing incidence neutron spin echo spectroscopy: instrumentation aspects and scientific opportunities. Journal of Physics: Conference Series, 2014, 528, 012025.	0.3	8
215	Characterization of hollow silica–polyelectrolyte composite nanoparticles by small-angle X-ray scattering. Journal of Materials Science, 2018, 53, 3210-3224.	1.7	8
216	Selective uptake of different proteins by annealed and quenched cationic spherical polyelectrolyte brushes. Journal of Polymer Science, 2020, 58, 3018-3030.	2.0	8

#	Article	IF	Citations
217	Flexible Sample Environments for the Investigation of Soft Matter at the European Spallation Source: Part Illâ€"The Macroscopic Foam Cell. Applied Sciences (Switzerland), 2021, 11, 5116.	1.3	8
218	Transparent Aluminium Oxide Coatings of Polymer Brushes. Angewandte Chemie - International Edition, 2016, 55, 5028-5034.	7.2	7
219	Experimental evaluation of additional short ranged repulsion in structural oscillation forces. Soft Matter, 2018, 14, 5383-5392.	1.2	7
220	Untangling superposed double layer and structural forces across confined nanoparticle suspensions. Physical Chemistry Chemical Physics, 2021, 23, 1325-1334.	1.3	7
221	Flexible Sample Environments for the Investigation of Soft Matter at the European Spallation Source: Part Iâ€"The In Situ SANS/DLS Setup. Applied Sciences (Switzerland), 2021, 11, 4089.	1.3	7
222	Copolymerization Kinetics of Dopamine Methacrylamide during PNIPAM Microgel Synthesis for Increased Adhesive Properties. Langmuir, 2022, 38, 5275-5285.	1.6	7
223	Chain length effects on complex formation in solutions of sodium alkanoates and tetradecyl trimethyl ammonium bromide. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 413, 115-118.	2.3	6
224	Effect of oppositely charged hydrophobic additives (alkanoates) on the stability of C14TAB foam films. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 460, 158-167.	2.3	6
225	A look inside particle stabilized foamsâ€"particle structure and dynamics. Journal Physics D: Applied Physics, 2015, 48, 434003.	1.3	6
226	Spherical polyelectrolyte nanogels as templates to prepare hollow silica nanocarriers: observation by small angle X-ray scattering and TEM. RSC Advances, 2017, 7, 47877-47885.	1.7	6
227	Externally Triggered Oscillatory Structural Forces. Langmuir, 2018, 34, 11526-11533.	1.6	6
228	Stimuli-responsive polymer/metal composites: From fundamental research to self-regulating devices. Current Opinion in Colloid and Interface Science, 2019, 44, 193-207.	3.4	6
229	Interaction among Spherical Polyelectrolyte Brushes in Concentrated Aqueous Solution. Langmuir, 2020, 36, 3104-3110.	1.6	6
230	Non-monotonic speed-dependence of microswimmers on wall distance. Soft Matter, 2021, 17, 9428-9433.	1.2	6
231	Effect of environmental parameters on the nano mechanical properties of hyaluronic acid/poly(<scp>l</scp> -lysine) multilayers. Physical Chemistry Chemical Physics, 2018, 20, 19082-19086.	1.3	6
232	Wetting of planar solid surfaces by bicontinuous sugar surfactant-based microemulsions. Colloid and Polymer Science, 2017, 295, 2183-2190.	1.0	5
233	A new model to describe small-angle neutron scattering from foams. Journal of Applied Crystallography, 2022, 55, 758-768.	1.9	5
234	A grazing incidence neutron spin echo study of near surface dynamics in p(MEO2MA-co-OEGMA) copolymer brushes. Colloid and Polymer Science, 2018, 296, 2005-2014.	1.0	4

#	Article	IF	CITATIONS
235	Amphiphilic Polymer Conetwork Gel Films Based on Tetra-Poly(ethylene Glycol) and Tetra-Poly(ε-Caprolactone). Polymers, 2022, 14, 2555.	2.0	4
236	Ordering of Polystyrene Nanoparticles on Substrates Pre-Coated with Different Polyelectrolyte Architectures. International Journal of Molecular Sciences, 2013, 14, 12893-12913.	1.8	3
237	Effect of anionic surfactant on alginateâ€chitosan polyelectrolyte multilayer thickness. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1798-1803.	2.4	3
238	Symmetric Cladding Thin Film Waveguides: From Lossy Media to Disordered Nanostructures. ACS Photonics, 2018, 5, 5110-5118.	3.2	3
239	Charge Density Gradients of Polymer Thin Film by Gaseous Phase Quaternization. ACS Macro Letters, 2020, 9, 158-162.	2.3	2
240	Model Surfaces for Paper Fibers Prepared from Carboxymethyl Cellulose and Polycations. Polymers, 2021, 13, 435.	2.0	2
241	Understanding near-surface polymer dynamics by a combination of grazing-incidence neutron scattering and virtual experiments. Journal of Applied Crystallography, 2021, 54, 72-79.	1.9	2
242	Wavelength frame multiplication for reflectometry at long-pulse neutron sources. Review of Scientific Instruments, 2020, 91, 125111.	0.6	2
243	Influence of Different Accelerators on the Rheology and Early Hydration of Cement Paste. RILEM Bookseries, 2020, , 106-115.	0.2	2
244	Synthesis and Analysis of Spherical Cementitious Model Particles. RILEM Bookseries, 2020, , 602-609.	0.2	2
245	Cohesion Gain Induced by Nanosilica Consolidants for Monumental Stone Restoration. Langmuir, 2022, 38, 6949-6958.	1.6	2
246	Oscillatory Structural Forces Across Dispersions of Micelles With Variable Surface Charge., 0, 2, .		2
247	Stimuli-Responsive Materials: Light-Controlled Reversible Manipulation of Microgel Particle Size Using Azobenzene-Containing Surfactant (Adv. Funct. Mater. 23/2012). Advanced Functional Materials, 2012, 22, 5064-5064.	7.8	1
248	Preface to the Growth of Colloid and Interface Science Special Issue. Langmuir, 2019, 35, 8517-8518.	1.6	1
249	Interaction of Different Charged Polymers with Potassium Ions and Their Effect on the Yield Stress of Highly Concentrated Glass Bead Suspensions. Materials, 2020, 13, 1490.	1.3	1
250	Colloidal Particles in Thin Liquid Films. , 2015, , 3-19.		1
251	Particle Interactions in Silica Systems in Presence of Superplasticizer. RILEM Bookseries, 2020, , 571-579.	0.2	1
252	Rheological Properties of Silica Beads in the Presence of Different Polymers and Electrolyte. RILEM Bookseries, 2020, , 619-627.	0.2	1

#	Article	IF	Citations
253	Multifunctional Dendritic Architectures: An Investigation of their Mechanical Properties. Materials Research Society Symposia Proceedings, 2012, 1403, 85.	0.1	О
254	Einfluss von transmembraner Druckdifferenz, Partikelgehalt und Phasenanteil auf das Filtrationsverhalten von Pickering-Emulsionen. Chemie-Ingenieur-Technik, 2014, 86, 1528-1529.	0.4	0
255	Gerhard Findenegg: A Scientific Life in Soft Matter at Interfaces. Zeitschrift Fur Physikalische Chemie, 2015, 229, 1037-1040.	1.4	O
256	Einfluss von Nanopartikeln auf den Stofftransport und die TropfengrĶğe in gerļhrten Flļssig/Flüssig-Systemen. Chemie-Ingenieur-Technik, 2016, 88, 1299-1299.	0.4	0
257	Trennung von w/o Pickering Emulsionen mittels Ultrafiltration. Chemie-Ingenieur-Technik, 2016, 88, 1333-1333.	0.4	0
258	Helmuth Möhwald (1946–2018). Angewandte Chemie, 2018, 130, 10576-10576.	1.6	0
259	Helmuth Möhwald (1946–2018). Angewandte Chemie - International Edition, 2018, 57, 10418-10418.	7.2	O
260	Influence of intramolecular charge coupling on intermolecular interactions of polycarboxybetaines in aqueous solution and in polyelectrolyte multilayers. Molecular Physics, $2021,119,$.	0.8	0
261	Polyelectrolytes, Films-Specific Ion Effects in Thin Films. , 2014, , 1633-1639.		O
262	Magnetic response of CoFe ₂ O ₄ nanoparticles confined in a PNIPAM microgel network. Soft Matter, 2022, 18, 1089-1099.	1.2	0
263	Potential Profiles Between Polyelectrolyte Multilayers and Spherical Colloids Measured with TIRM. , 0, , 52-57.		O
264	Impact of aluminum particles on drop size distributions and phase separation in liquid multiphase systems. Chemical Engineering Research and Design, 2022, 184, 603-613.	2.7	0
265	Dielectric function of a polymer brush functionalized with gold nanoparticles determined from spectroscopic ellipsometry., 2022,,.		0