
Florence Leroux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7446464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of indole-based activators of insulin degrading enzyme. European Journal of Medicinal Chemistry, 2022, 228, 113982.	2.6	3
2	Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer?. Cells, 2022, 11, 1228.	1.8	3
3	The small-molecule SMARt751 reverses <i>Mycobacterium tuberculosis</i> resistance to ethionamide in acute and chronic mouse models of tuberculosis. Science Translational Medicine, 2022, 14, eaaz6280.	5.8	10
4	Beyond the Rule of 5: Impact of PEGylation with Various Polymer Sizes on Pharmacokinetic Properties, Structure–Properties Relationships of mPEGylated Small Agonists of TGR5 Receptor. Journal of Medicinal Chemistry, 2021, 64, 1593-1610.	2.9	9
5	NMR spectroscopy of the main protease of SARSâ€CoVâ€⊋ and fragmentâ€based screening identify three protein hotspots and an antiviral fragment. Angewandte Chemie, 2021, 133, 25632.	1.6	2
6	NMR Spectroscopy of the Main Protease of SARSâ€CoVâ€2 and Fragmentâ€Based Screening Identify Three Protein Hotspots and an Antiviral Fragment. Angewandte Chemie - International Edition, 2021, 60, 25428-25435.	7.2	22
7	Molecular Design in Practice: A Review of Selected Projects in a French Research Institute That Illustrates the Link between Chemical Biology and Medicinal Chemistry. Molecules, 2021, 26, 6083.	1.7	Ο
8	Drug Target Engagement Using Coupled Cellular Thermal Shift Assay—Acoustic Reverse-Phase Protein Array. SLAS Discovery, 2020, 25, 207-214.	1.4	7
9	Highâ€Content Screening for Proteinâ€Protein Interaction Modulators Using Proximity Ligation Assay in Primary Neurons. Current Protocols in Cell Biology, 2020, 86, e100.	2.3	4
10	Fragment-Based Optimized EthR Inhibitors with <i>in Vivo</i> Ethionamide Boosting Activity. ACS Infectious Diseases, 2020, 6, 366-378.	1.8	15
11	High-Throughput Image-Based Aggresome Quantification. SLAS Discovery, 2020, 25, 783-791.	1.4	8
12	Identification of ebselen as a potent inhibitor of insulin degrading enzyme by a drug repurposing screening. European Journal of Medicinal Chemistry, 2019, 179, 557-566.	2.6	13
13	BIN1 recovers tauopathy-induced long-term memory deficits in mice and interacts with Tau through Thr348 phosphorylation. Acta Neuropathologica, 2019, 138, 631-652.	3.9	44
14	A fragment-based approach towards the discovery of N-substituted tropinones as inhibitors of Mycobacterium tuberculosis transcriptional regulator EthR2. European Journal of Medicinal Chemistry, 2019, 167, 426-438.	2.6	13
15	Topical Intestinal Aminoimidazole Agonists of G-Protein-Coupled Bile Acid Receptor 1 Promote Glucagon Like Peptide-1 Secretion and Improve Glucose Tolerance. Journal of Medicinal Chemistry, 2017, 60, 4185-4211.	2.9	48
16	Genome-wide, high-content siRNA screening identifies the Alzheimer's genetic risk factor FERMT2 as a major modulator of APP metabolism. Acta Neuropathologica, 2017, 133, 955-966.	3.9	60
17	Controlling Plasma Stability of Hydroxamic Acids: A MedChem Toolbox. Journal of Medicinal Chemistry, 2017, 60, 9067-9089.	2.9	40
18	ADAM30 Downregulates APP-Linked Defects Through Cathepsin D Activation in Alzheimer's Disease. EBioMedicine, 2016, 9, 278-292.	2.7	40

FLORENCE LEROUX

#	Article	IF	CITATIONS
19	Catalytic site inhibition of insulin-degrading enzyme by a small molecule induces glucose intolerance in mice. Nature Communications, 2015, 6, 8250.	5.8	71
20	Structure–activity relationships of imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, dual binders of human insulin-degrading enzyme. European Journal of Medicinal Chemistry, 2015, 90, 547-567.	2.6	24
21	Inhibition of aggrecanases as a therapeutic strategy in osteoarthritis. Future Medicinal Chemistry, 2014, 6, 1399-1412.	1.1	15
22	Imidazole-derived 2-[N-carbamoylmethyl-alkylamino]acetic acids, substrate-dependent modulators of insulin-degrading enzyme in amyloid-β hydrolysis. European Journal of Medicinal Chemistry, 2014, 79, 184-193.	2.6	27
23	Identification of Small Inhibitory Molecules Targeting the Bfl-1 Anti-Apoptotic Protein That Alleviates Resistance to ABT-737. Journal of Biomolecular Screening, 2014, 19, 1035-1046.	2.6	11
24	Ligand Efficiency Driven Design of New Inhibitors of <i>Mycobacterium tuberculosis</i> Transcriptional Repressor EthR Using Fragment Growing, Merging, and Linking Approaches. Journal of Medicinal Chemistry, 2014, 57, 4876-4888.	2.9	59
25	Aggrecanase-2 inhibitors based on the acylthiosemicarbazide zinc-binding group. European Journal of Medicinal Chemistry, 2013, 69, 244-261.	2.6	13
26	Structure–Activity Relationships and Blood Distribution of Antiplasmodial Aminopeptidase-1 Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 10909-10917.	2.9	37
27	Novel selective inhibitors of neutral endopeptidase: discovery by screening and hit-to-lead optimisation. MedChemComm, 2012, 3, 469.	3.5	4
28	Discovery of Novel <i>N</i> -Phenylphenoxyacetamide Derivatives as EthR Inhibitors and Ethionamide Boosters by Combining High-Throughput Screening and Synthesis. Journal of Medicinal Chemistry, 2012, 55, 6391-6402.	2.9	45
29	Ethionamide Boosters. 2. Combining Bioisosteric Replacement and Structure-Based Drug Design To Solve Pharmacokinetic Issues in a Series of Potent 1,2,4-Oxadiazole EthR Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 68-83.	2.9	69
30	Drug-to-Genome-to-Drug, Step 2: Reversing Selectivity in a Series of Antiplasmodial Compounds. Journal of Medicinal Chemistry, 2012, 55, 1274-1286.	2.9	20
31	Drug to Genome to Drug: Discovery of New Antiplasmodial Compounds. Journal of Medicinal Chemistry, 2011, 54, 3222-3240.	2.9	57
32	Ethionamide Boosters: Synthesis, Biological Activity, and Structureâ^'Activity Relationships of a Series of 1,2,4-Oxadiazole EthR Inhibitors. Journal of Medicinal Chemistry, 2011, 54, 2994-3010.	2.9	73
33	New non-hydroxamic ADAMTS-5 inhibitors based on the 1,2,4-triazole-3-thiol scaffold. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 6213-6216.	1.0	21
34	Designing Focused Chemical Libraries Enriched in Protein-Protein Interaction Inhibitors using Machine-Learning Methods. PLoS Computational Biology, 2010, 6, e1000695.	1.5	110
35	Synthetic EthR inhibitors boost antituberculous activity of ethionamide. Nature Medicine, 2009, 15, 537-544.	15.2	162
36	Synthesis of a 200-member library of squaric acid N-hydroxylamide amides. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4968-4971.	1.0	23

FLORENCE LEROUX

#	Article	IF	CITATIONS
37	Use of a Low-Density Microarray for Studying Gene Expression Patterns Induced by Hepatotoxicants on Primary Cultures of Rat Hepatocytes. Toxicological Sciences, 2003, 75, 378-392.	1.4	112
38	Tracheal Relaxant Effect of Triazine Derivatives: Correlation with Phosphodiesterase 4 Inhibitory Activity. Pharmacy and Pharmacology Communications, 1999, 5, 207-210.	0.3	0
39	High-performance liquid chromatographic determination of cyclic 3′,5′-AMP with fluorescence detection vasoactive intestinal peptide-induced modification of its concentration in neuroblastoma cells. Biomedical Applications, 1994, 657, 192-196.	1.7	5
40	A new vasoactive intestinal peptide antagonist discriminates VIP receptors on guinea pig trachea and human neuroblastoma cells. Regulatory Peptides, 1994, 52, 119-128.	1.9	6