Javier Paz-Ares

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7446012/javier-paz-ares-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

59	9,962	40	59
papers	citations	h-index	g-index
59 ext. papers	11,743 ext. citations	11.1 avg, IF	5.53 L-index

#	Paper	IF	Citations
59	Plant adaptation to low phosphorus availability: Core signaling, crosstalks and applied implications Molecular Plant, 2021 ,	14.4	5
58	KISS ME DEADLY F-box proteins modulate cytokinin responses by targeting the transcription factor TCP14 for degradation. <i>Plant Physiology</i> , 2021 , 185, 1495-1499	6.6	2
57	A reciprocal inhibitory module for Pi and iron signaling. <i>Molecular Plant</i> , 2021 ,	14.4	2
56	Arsenite provides a selective signal that coordinates arsenate uptake and detoxification through the regulation of PHR1 stability in Arabidopsis. <i>Molecular Plant</i> , 2021 , 14, 1489-1507	14.4	9
55	When nitrate and phosphate sensors meet. <i>Nature Plants</i> , 2019 , 5, 339-340	11.5	12
54	Arabidopsis ALIX Regulates Stomatal Aperture and Turnover of Abscisic Acid Receptors. <i>Plant Cell</i> , 2019 , 31, 2411-2429	11.6	23
53	Novel signals in the regulation of Pi starvation responses in plants: facts and promises. <i>Current Opinion in Plant Biology</i> , 2017 , 39, 40-49	9.9	83
52	Root microbiota drive direct integration of phosphate stress and immunity. <i>Nature</i> , 2017 , 543, 513-518	50.4	369
51	Cytokinin Determines Thiol-Mediated Arsenic Tolerance and Accumulation. <i>Plant Physiology</i> , 2016 , 171, 1418-26	6.6	33
50	The rice CK2 kinase regulates trafficking of phosphate transporters in response to phosphate levels. <i>Plant Cell</i> , 2015 , 27, 711-23	11.6	72
49	Arabidopsis ALIX is required for the endosomal localization of the deubiquitinating enzyme AMSH3. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, E554	43 ⁻ 5 ⁵ 1	40
48	ESCRT-III-Associated Protein ALIX Mediates High-Affinity Phosphate Transporter Trafficking to Maintain Phosphate Homeostasis in Arabidopsis. <i>Plant Cell</i> , 2015 , 27, 2560-81	11.6	65
47	Endogenous Arabidopsis messenger RNAs transported to distant tissues. <i>Nature Plants</i> , 2015 , 1, 15025	11.5	222
46	Genome expansion of Arabis alpina linked with retrotransposition and reduced symmetric DNA methylation. <i>Nature Plants</i> , 2015 , 1, 14023	11.5	121
45	Multi-gene silencing in Arabidopsis: a collection of artificial microRNAs targeting groups of paralogs encoding transcription factors. <i>Plant Journal</i> , 2014 , 80, 149-60	6.9	18
44	Natural variation in arsenate tolerance identifies an arsenate reductase in Arabidopsis thaliana. <i>Nature Communications</i> , 2014 , 5, 4617	17.4	115
43	SPX1 is a phosphate-dependent inhibitor of Phosphate Starvation Response 1 in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14947-52	11.5	239

(2005-2014)

42	Targeted degradation of abscisic acid receptors is mediated by the ubiquitin ligase substrate adaptor DDA1 in Arabidopsis. <i>Plant Cell</i> , 2014 , 26, 712-28	11.6	136
41	The TRANSPLANTA collection of Arabidopsis lines: a resource for functional analysis of transcription factors based on their conditional overexpression. <i>Plant Journal</i> , 2014 , 77, 944-53	6.9	61
40	Proteomics identifies ubiquitin-proteasome targets and new roles for chromatin-remodeling in the Arabidopsis response to phosphate starvation. <i>Journal of Proteomics</i> , 2013 , 94, 1-22	3.9	23
39	Roles of ubiquitination in the control of phosphate starvation responses in plants(f). <i>Journal of Integrative Plant Biology</i> , 2013 , 55, 40-53	8.3	27
38	WRKY6 transcription factor restricts arsenate uptake and transposon activation in Arabidopsis. <i>Plant Cell</i> , 2013 , 25, 2944-57	11.6	129
37	Role of actin cytoskeleton in brassinosteroid signaling and in its integration with the auxin response in plants. <i>Developmental Cell</i> , 2012 , 22, 1275-85	10.2	91
36	ceRNAs: miRNA target mimic mimics. <i>Cell</i> , 2011 , 147, 1431-2	56.2	42
35	The Arabidopsis bHLH transcription factors MYC3 and MYC4 are targets of JAZ repressors and act additively with MYC2 in the activation of jasmonate responses. <i>Plant Cell</i> , 2011 , 23, 701-15	11.6	700
34	Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. <i>Plant Cell</i> , 2011 , 23, 1523-35	11.6	158
33	Speeding cis-trans regulation discovery by phylogenomic analyses coupled with screenings of an arrayed library of Arabidopsis transcription factors. <i>PLoS ONE</i> , 2011 , 6, e21524	3.7	61
32	Dissection of local and systemic transcriptional responses to phosphate starvation in Arabidopsis. <i>Plant Journal</i> , 2010 , 64, 775-89	6.9	209
31	A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis. <i>PLoS Genetics</i> , 2010 , 6, e1001102	6	408
30	A collection of target mimics for comprehensive analysis of microRNA function in Arabidopsis thaliana. <i>PLoS Genetics</i> , 2010 , 6, e1001031	6	295
29	Plant hormones and nutrient signaling. Plant Molecular Biology, 2009, 69, 361-73	4.6	235
28	Target mimicry provides a new mechanism for regulation of microRNA activity. <i>Nature Genetics</i> , 2007 , 39, 1033-7	36.3	1445
27	A mutant of the Arabidopsis phosphate transporter PHT1;1 displays enhanced arsenic accumulation. <i>Plant Cell</i> , 2007 , 19, 1123-33	11.6	246
26	Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. <i>Plant Physiology</i> , 2005 , 138, 847-57	6.6	234
25	PHOSPHATE TRANSPORTER TRAFFIC FACILITATOR1 is a plant-specific SEC12-related protein that enables the endoplasmic reticulum exit of a high-affinity phosphate transporter in Arabidopsis. <i>Plant Cell</i> , 2005 , 17, 3500-12	11.6	221

24	The transcriptional control of plant responses to phosphate limitation. <i>Journal of Experimental Botany</i> , 2004 , 55, 285-93	7	203
23	Versatile gene-specific sequence tags for Arabidopsis functional genomics: transcript profiling and reverse genetics applications. <i>Genome Research</i> , 2004 , 14, 2176-89	9.7	265
22	Interallelic complementation at the Arabidopsis CRE1 locus uncovers independent pathways for the proliferation of vascular initials and canonical cytokinin signalling. <i>Plant Journal</i> , 2004 , 38, 70-9	6.9	32
21	CATMA: a complete Arabidopsis GST database. <i>Nucleic Acids Research</i> , 2003 , 31, 156-8	20.1	126
20	REGIA, an EU project on functional genomics of transcription factors from Arabidopsis Thaliana. <i>Comparative and Functional Genomics</i> , 2002 , 3, 102-8		60
19	Mutations at CRE1 impair cytokinin-induced repression of phosphate starvation responses in Arabidopsis. <i>Plant Journal</i> , 2002 , 32, 353-60	6.9	149
18	A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. <i>Genes and Development</i> , 2001 , 15, 2122-33	12.6	858
17	Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. <i>Plant Journal</i> , 2000 , 24, 559-67	6.9	315
16	Function search in a large transcription factor gene family in Arabidopsis: assessing the potential of reverse genetics to identify insertional mutations in R2R3 MYB genes. <i>Plant Cell</i> , 1999 , 11, 1827-40	11.6	139
15	A type 5 acid phosphatase gene from Arabidopsis thaliana is induced by phosphate starvation and by some other types of phosphate mobilising/oxidative stress conditions. <i>Plant Journal</i> , 1999 , 19, 579-	89 ^{6.9}	243
14	Function Search in a Large Transcription Factor Gene Family in Arabidopsis: Assessing the Potential of Reverse Genetics to Identify Insertional Mutations in R2R3 MYB Genes. <i>Plant Cell</i> , 1999 , 11, 1827	11.6	2
13	Towards functional characterisation of the members of the R2R3-MYB gene family from Arabidopsis thaliana. <i>Plant Journal</i> , 1998 , 16, 263-76	6.9	467
12	A single residue substitution causes a switch from the dual DNA binding specificity of plant transcription factor MYB.Ph3 to the animal c-MYB specificity. <i>Journal of Biological Chemistry</i> , 1997 , 272, 2889-95	5.4	39
11	MYB transcription factors in plants. <i>Trends in Genetics</i> , 1997 , 13, 67-73	8.5	440
10	Bacterial expression of an active class Ib chitinase from Castanea sativa cotyledons. <i>Plant Molecular Biology</i> , 1996 , 32, 1171-6	4.6	23
9	MYB.Ph3 transcription factor from Petunia hybrida induces similar DNA-bending/distortions on its two types of binding site. <i>Plant Journal</i> , 1995 , 8, 673-82	6.9	21
8	Petunia hybrida genes related to the maize regulatory C1 gene and to animal myb proto-oncogenes. <i>Plant Journal</i> , 1993 , 3, 553-62	6.9	73
7	Multiple genes are transcribed in Hordeum vulgare and Zea mays that carry the DNA binding domain of the myb oncoproteins. <i>Molecular Genetics and Genomics</i> , 1989 , 216, 183-7		61

LIST OF PUBLICATIONS

6	A dimeric inhibitor or insect alpha-amylase from barley. Cloning of the cDNA and identification of the protein. <i>FEBS Journal</i> , 1988 , 172, 129-34		29
5	Cloning and nucleotide sequence of a cDNA encoding the precursor of the barley toxin alpha-hordothionin. <i>FEBS Journal</i> , 1986 , 156, 131-5		60
4	Polyadenylation site heterogeneity in mRNA encoding the precursor of the barley toxin Ehordothionin. <i>FEBS Letters</i> , 1986 , 200, 103-106	3.8	41
3	Molecular cloning of the c locus of Zea mays : a locus regulating the anthocyanin pathway. <i>EMBO Journal</i> , 1986 , 5, 829-833	13	122
2	In vivo and in vitro synthesis of CM-proteins (A-hordeins) from barley (Hordeum vulgare L.). <i>Planta</i> , 1983 , 157, 74-80	4.7	25
1	Inhibition of eukaryotic cell-free protein synthesis by thionins from wheat endosperm. <i>Biochimica Et Biophysica Acta Gene Regulatory Mechanisms</i> , 1983 , 740, 52-56		18