Jun Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7445907/publications.pdf Version: 2024-02-01

LUN VANC

#	Article	IF	CITATIONS
1	Broadband terahertz metamaterial absorber based on tantalum nitride. Applied Optics, 2017, 56, 2449.	2.1	69
2	Graphene-based tunable polarization sensitive terahertz metamaterial absorber. Optics Communications, 2016, 380, 101-107.	1.0	66
3	Programmable Manipulations of Terahertz Beams by Transmissive Digital Coding Metasurfaces Based on Liquid Crystals. Advanced Optical Materials, 2021, 9, 2100932.	3.6	60
4	Electrically tunable terahertz dual-band metamaterial absorber based on a liquid crystal. RSC Advances, 2018, 8, 4197-4203.	1.7	47
5	A Tunable Metamaterial Absorber Based on Liquid Crystal Intended for F Frequency Band. IEEE Antennas and Wireless Propagation Letters, 2017, 16, 2062-2065.	2.4	35
6	Flexible Terahertz Beam Manipulations Based on Liquid-Crystal-Integrated Programmable Metasurfaces. ACS Applied Materials & Interfaces, 2022, 14, 22287-22294.	4.0	35
7	An Ultrathin, Triple-Band Metamaterial Absorber with Wide-Incident-Angle Stability for Conformal Applications at X and Ku Frequency Band. Nanoscale Research Letters, 2020, 15, 217.	3.1	33
8	Wideband Metamaterial Absorbers Based on Conductive Plastic with Additive Manufacturing Technology. ACS Omega, 2018, 3, 11144-11150.	1.6	32
9	Electrically tunable liquid crystal terahertz device based on double-layer plasmonic metamaterial. Optics Express, 2019, 27, 27039.	1.7	32
10	Reflective liquid crystal terahertz phase shifter with tuning range of over 360°. IET Microwaves, Antennas and Propagation, 2018, 12, 1466-1469.	0.7	29
11	Tripleâ€band polarisationâ€independent metamaterial absorber at mm wave frequency band. IET Microwaves, Antennas and Propagation, 2018, 12, 1120-1125.	0.7	29
12	Electrically Tunable Reflective Terahertz Phase Shifter Based on Liquid Crystal. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39, 439-446.	1.2	26
13	Tunable Liquid Crystal Based Phase Shifter with a Slot Unit Cell for Reconfigurable Reflectarrays in F-Band. Applied Sciences (Switzerland), 2018, 8, 2528.	1.3	24
14	Optically transparent and single-band metamaterial absorber based on indium-tin-oxide. International Journal of RF and Microwave Computer-Aided Engineering, 2019, 29, e21536.	0.8	22
15	Fast-Tunable Terahertz Metamaterial Absorber Based on Polymer Network Liquid Crystal. Applied Sciences (Switzerland), 2018, 8, 2454.	1.3	20
16	An efficient wideband cross-polarization converter manufactured by stacking metal/dielectric multilayers via 3D printing. Journal of Applied Physics, 2020, 127, .	1.1	19
17	Electronically Tunable Liquid-Crystal-Based F-Band Phase Shifter. IEEE Access, 2020, 8, 151065-151071.	2.6	17
18	Liquid crystal-based wide-angle metasurface absorber with large frequency tunability and low voltage. Optics Express, 2022, 30, 22550.	1.7	17

Jun Yang

#	Article	IF	CITATIONS
19	Measurement of LC dielectric constant at lower terahertz region based on metamaterial absorber. IEICE Electronics Express, 2017, 14, 20170469-20170469.	0.3	15
20	Fully Electronically Phase Modulation of Millimeter-Wave via Comb Electrodes and Liquid Crystal. IEEE Antennas and Wireless Propagation Letters, 2021, 20, 342-345.	2.4	15
21	Tunable terahertz metamaterial wideband absorber with liquid crystal. Optical Materials Express, 2021, 11, 4026.	1.6	14
22	A Miniaturized 3-D Metamaterial Absorber With Wide Angle Stability. IEEE Microwave and Wireless Components Letters, 2022, 32, 1111-1114.	2.0	13
23	A Polarization-Dependent Frequency-Selective Metamaterial Absorber with Multiple Absorption Peaks. Applied Sciences (Switzerland), 2017, 7, 580.	1.3	10
24	A Tunable Polarization-Dependent Terahertz Metamaterial Absorber Based on Liquid Crystal. Electronics (Switzerland), 2018, 7, 27.	1.8	10
25	Enhanced broadband absorption with a twisted multilayer metal–dielectric stacking metamaterial. Nanoscale Advances, 2021, 3, 4804-4809.	2.2	9
26	Dielectric properties of two high birefringence liquid crystal mixtures in the Sub-THz band. Liquid Crystals, 2020, 47, 83-88.	0.9	7
27	Active continuous control of terahertz wave based on a reflectarray element-liquid crystal-grating electrode hybrid structure. Optics Express, 2022, 30, 17361.	1.7	6
28	Angle-Dispersive Metasurface for Axisymmetric Wavefront Manipulation over Continuous Incident Angles. Physical Review Applied, 2020, 14, .	1,5	5
29	Dielectric Properties of Liquid Crystal Polymer Substrates in the Region from 90 to 140 GHz. Crystals, 2022, 12, 170.	1.0	5
30	A Novel Electronically Controlled Two-Dimensional Terahertz Beam-Scanning Reflectarray Antenna Based on Liquid Crystals. Frontiers in Physics, 2020, 8, .	1.0	4
31	The Characterization and Application of Two Liquid Crystal Mixtures in the Low THz Region. Crystals, 2020, 10, 99.	1.0	4
32	Tunable Terahertz Transmission Properties of Double-Layered Metal Hole-Loop Arrays Using Nematic Liquid Crystal. Journal of Infrared, Millimeter, and Terahertz Waves, 2019, 40, 276-287.	1.2	3
33	TM-polarized angle-dispersive metasurface for axisymmetric extension of beam steering angles. Optics Express, 2021, 29, 3211.	1.7	3
34	Design and Experiment of Wideband Filters Based on Double-Layered Square-Loop Arrays in the F-Band. Applied Sciences (Switzerland), 2018, 8, 1669.	1.3	2
35	Design and Experimental Verification of a Liquid Crystal-Based Terahertz Phase Shifter for Reconfigurable Reflectarrays. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 665-674.	1.2	2
36	Graphene-based wavelength demultiplexing structure. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2020, 37, 903.	0.8	1

 #
 ARTICLE
 IF
 CITATIONS

 37
 Bandpass filter based on comb shaped graphene nanoribbons. OSA Continuum, 2019, 2, 2614.
 1.8
 1

 38
 Liquid Crystal Terahertz Modulator Based on Double-layer Plasmonic Metamaterial., 2020,,.
 1

 39
 Orbital Angular Momentum Multiplexing Based on Angle-dispersive Metasurface., 2021,,.
 1

 40
 Terahertz Transmission Characteristics of Double-Layer Plasmonic Metamaterial and LC-Based
 1.2
 0

Jun Yang