Robert Tibshirani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7445787/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regression Shrinkage and Selection Via the Lasso. Journal of the Royal Statistical Society Series B: Methodological, 1996, 58, 267-288.	0.8	14,507
2	Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 2010, 33, .	1.8	10,210
3	The Elements of Statistical Learning. Springer Series in Statistics, 2001, , .	0.9	9,764
4	Least angle regression. Annals of Statistics, 2004, 32, 407.	1.4	6,530
5	Regularization Paths for Generalized Linear Models via Coordinate Descent. Journal of Statistical Software, 2010, 33, 1-22.	1.8	5,775
6	Estimating the number of clusters in a data set via the gap statistic. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2001, 63, 411-423.	1.1	3,996
7	THE LASSO METHOD FOR VARIABLE SELECTION IN THE COX MODEL. Statistics in Medicine, 1997, 16, 385-395.	0.8	3,038
8	Diagnosis of multiple cancer types by shrunken centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6567-6572.	3.3	2,632
9	Sparse Principal Component Analysis. Journal of Computational and Graphical Statistics, 2006, 15, 265-286.	0.9	2,067
10	Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent. Journal of Statistical Software, 2011, 39, 1-13.	1.8	1,453
11	Empirical Bayes Analysis of a Microarray Experiment. Journal of the American Statistical Association, 2001, 96, 1151-1160.	1.8	1,420
12	Increasing value and reducing waste in research design, conduct, and analysis. Lancet, The, 2014, 383, 166-175.	6.3	1,186
13	A Sparse-Group Lasso. Journal of Computational and Graphical Statistics, 2013, 22, 231-245.	0.9	913
14	Flexible Discriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 1994, 89, 1255-1270.	1.8	588
15	Prediction by Supervised Principal Components. Journal of the American Statistical Association, 2006, 101, 119-137.	1.8	568
16	Generalized Additive Models: Some Applications. Journal of the American Statistical Association, 1987, 82, 371-386.	1.8	558
17	Cluster Validation by Prediction Strength. Journal of Computational and Graphical Statistics, 2005, 14, 511-528.	0.9	428
18	Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Science Immunology, 2020, 5, .	5.6	404

#	Article	IF	CITATIONS
19	A significance test for the lasso. Annals of Statistics, 2014, 42, 413-468.	1.4	400
20	Integrating genomic features for non-invasive early lung cancer detection. Nature, 2020, 580, 245-251.	13.7	379
21	Local Likelihood Estimation. Journal of the American Statistical Association, 1987, 82, 559-567.	1.8	378
22	Genetics of 35 blood and urine biomarkers in the UK Biobank. Nature Genetics, 2021, 53, 185-194.	9.4	377
23	An immune clock of human pregnancy. Science Immunology, 2017, 2, .	5.6	371
24	Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. Journal of Clinical Oncology, 2018, 36, 2845-2853.	0.8	313
25	A Simple Method for Estimating Interactions Between a Treatment and a Large Number of Covariates. Journal of the American Statistical Association, 2014, 109, 1517-1532.	1.8	227
26	Sustained outcomes in oral immunotherapy for peanut allergy (POISED study): a large, randomised, double-blind, placebo-controlled, phase 2 study. Lancet, The, 2019, 394, 1437-1449.	6.3	215
27	A Comparison of Some Error Estimates for Neural Network Models. Neural Computation, 1996, 8, 152-163.	1.3	204
28	An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature Aging, 2021, 1, 598-615.	5.3	202
29	Noninvasive blood tests for fetal development predict gestational age and preterm delivery. Science, 2018, 360, 1133-1136.	6.0	198
30	Combining Estimates in Regression and Classification. Journal of the American Statistical Association, 1996, 91, 1641-1650.	1.8	181
31	Multiomics modeling of the immunome, transcriptome, microbiome, proteome and metabolome adaptations during human pregnancy. Bioinformatics, 2019, 35, 95-103.	1.8	162
32	Estimating Transformations for Regression via Additivity and Variance Stabilization. Journal of the American Statistical Association, 1988, 83, 394-405.	1.8	161
33	Metabolic Dynamics and Prediction of Gestational Age and Time to Delivery in Pregnant Women. Cell, 2020, 181, 1680-1692.e15.	13.5	154
34	Flexible Discriminant Analysis by Optimal Scoring. Journal of the American Statistical Association, 1994, 89, 1255.	1.8	150
35	The Bootstrap Method for Assessing Statistical Accuracy. Behaviormetrika, 1985, 12, 1-35.	0.9	142
36	Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction. Cell, 2019, 178, 699-713.e19.	13.5	138

#	Article	IF	CITATIONS
37	Hierarchical Clustering With Prototypes via Minimax Linkage. Journal of the American Statistical Association, 2011, 106, 1075-1084.	1.8	127
38	Quantitative SD-OCT Imaging Biomarkers as Indicators of Age-Related Macular Degeneration Progression. , 2014, 55, 7093.		118
39	Pancancer analysis of DNA methylation-driven genes using MethylMix. Genome Biology, 2015, 16, 17.	3.8	117
40	Single-cell developmental classification of B cell precursor acute lymphoblastic leukemia at diagnosis reveals predictors of relapse. Nature Medicine, 2018, 24, 474-483.	15.2	112
41	Metabolic Markers and Statistical Prediction of Serous Ovarian Cancer Aggressiveness by Ambient Ionization Mass Spectrometry Imaging. Cancer Research, 2017, 77, 2903-2913.	0.4	106
42	Local Likelihood Estimation. , 0, .		97
43	Origins and clonal convergence of gastrointestinal IgE ⁺ B cells in human peanut allergy. Science Immunology, 2020, 5, .	5.6	88
44	Adaptive Principal Surfaces. Journal of the American Statistical Association, 1994, 89, 53-64.	1.8	83
45	Some methods for heterogeneous treatment effect estimation in high dimensions. Statistics in Medicine, 2018, 37, 1767-1787.	0.8	83
46	Results from the second year of a collaborative effort to forecast influenza seasons in the United States. Epidemics, 2018, 24, 26-33.	1.5	83
47	Generalized Additive Models: Some Applications. Journal of the American Statistical Association, 1987, 82, 371.	1.8	83
48	Transposable regularized covariance models with an application to missing data imputation. Annals of Applied Statistics, 2010, 4, 764-790.	0.5	82
49	A proteomic clock of human pregnancy. American Journal of Obstetrics and Gynecology, 2018, 218, 347.e1-347.e14.	0.7	82
50	Standardization and the Group Lasso Penalty. Statistica Sinica, 2012, 22, 983-1001.	0.2	79
51	Landscape of monoallelic DNA accessibility in mouse embryonic stem cells and neural progenitor cells. Nature Genetics, 2017, 49, 377-386.	9.4	76
52	A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank. PLoS Genetics, 2020, 16, e1009141.	1.5	75
53	Bootstrap Confidence Intervals and Bootstrap Approximations. Journal of the American Statistical Association, 1987, 82, 163-170.	1.8	73
54	Multicenter Study Using Desorption-Electrospray-Ionization-Mass-Spectrometry Imaging for Breast-Cancer Diagnosis. Analytical Chemistry, 2018, 90, 11324-11332.	3.2	70

#	Article	IF	CITATIONS
55	A comparison of statistical learning methods on the GUSTO database. , 1998, 17, 2501-2508.		67
56	Nearly-Isotonic Regression. Technometrics, 2011, 53, 54-61.	1.3	64
57	Chemical Space Mimicry for Drug Discovery. Journal of Chemical Information and Modeling, 2017, 57, 875-882.	2.5	63
58	Long-term course of patients with primary ocular adnexal MALT lymphoma: a large single-institution cohort study. Blood, 2017, 129, 324-332.	0.6	60
59	Impact of menstrual phase on false-negative mammograms in the canadian national breast screening study. Cancer, 1997, 80, 720-724.	2.0	59
60	Food allergy and omics. Journal of Allergy and Clinical Immunology, 2018, 141, 20-29.	1.5	59
61	Shaping of infant B cell receptor repertoires by environmental factors and infectious disease. Science Translational Medicine, 2019, 11, .	5.8	58
62	Integration of mechanistic immunological knowledge into a machine learning pipeline improves predictions. Nature Machine Intelligence, 2020, 2, 619-628.	8.3	52
63	Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells. Nature Biotechnology, 2019, 37, 259-266.	9.4	49
64	Collaborative regression. Biostatistics, 2015, 16, 326-338.	0.9	45
65	Estimating Transformations for Regression via Additivity and Variance Stabilization. , 0, .		41
66	Significant sparse polygenic risk scores across 813 traits in UK Biobank. PLoS Genetics, 2022, 18, e1010105.	1.5	40
67	Identification of diagnostic metabolic signatures in clear cell renal cell carcinoma using mass spectrometry imaging. International Journal of Cancer, 2020, 147, 256-265.	2.3	38
68	Prognostic Gene-Expression Signatures in Adult Acute Myeloid Leukemia with Normal Karyotype Blood, 2005, 106, 756-756.	0.6	38
69	Model Search by Bootstrap "Bumping― Journal of Computational and Graphical Statistics, 1999, 8, 671-686.	0.9	37
70	THE LASSO METHOD FOR VARIABLE SELECTION IN THE COX MODEL. , 1997, 16, 385.		35
71	Can auxiliary indicators improve COVID-19 forecasting and hotspot prediction?. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	30

5

#	Article	IF	CITATIONS
73	An open repository of real-time COVID-19 indicators. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	27
74	Data Shared Lasso: A novel tool to discover uplift. Computational Statistics and Data Analysis, 2016, 101, 226-235.	0.7	26
75	Inference with Transposable Data: Modelling the Effects of Row and Column Correlations. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2012, 74, 721-743.	1.1	25
76	Log-Ratio Lasso: Scalable, Sparse Estimation for Log-Ratio Models. Biometrics, 2019, 75, 613-624.	0.8	24
77	Transcriptional changes in peanut-specific CD4+ T cells over the course of oral immunotherapy. Clinical Immunology, 2020, 219, 108568.	1.4	22
78	Fast Lasso method for large-scale and ultrahigh-dimensional Cox model with applications to UK Biobank. Biostatistics, 2022, 23, 522-540.	0.9	22
79	Penalized regression for leftâ€ŧruncated and rightâ€censored survival data. Statistics in Medicine, 2021, 40, 5487-5500.	0.8	21
80	Increased diversity of gut microbiota during active oral immunotherapy in peanutâ€ e llergic adults. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 927-930.	2.7	20
81	De novo mutational signature discovery in tumor genomes using SparseSignatures. PLoS Computational Biology, 2021, 17, e1009119.	1.5	20
82	A Pliable Lasso. Journal of Computational and Graphical Statistics, 2020, 29, 215-225.	0.9	18
83	Pathophysiological significance and therapeutic targeting of germinal center kinase in diffuse large B-cell lymphoma. Blood, 2016, 128, 239-248.	0.6	17
84	Differentiation-Stage-Specific Expression of MicroRNAs in B-Lymphocytes and Diffuse Large B-Cell Lymphomas (DLBCL). Blood, 2008, 112, 805-805.	0.6	15
85	Sparse regression and marginal testing using cluster prototypes. Biostatistics, 2015, 17, kxv049.	0.9	14
86	Polygenic risk modeling with latent trait-related genetic components. European Journal of Human Genetics, 2021, 29, 1071-1081.	1.4	14
87	Bootstrap Confidence Intervals and Bootstrap Approximations. , 0, .		13
88	Main Effects and Interactions in Mixed and Incomplete Data Frames. Journal of the American Statistical Association, 2020, 115, 1292-1303.	1.8	12
89	Customized training with an application to mass spectrometric imaging of cancer tissue. Annals of Applied Statistics, 2015, 9, 1709-1725.	0.5	11
90	Postâ€selection point and interval estimation of signal sizes in Gaussian samples. Canadian Journal of Statistics, 2017, 45, 128-148.	0.6	11

#	Article	IF	CITATIONS
91	The stanford prostate cancer calculator: Development and external validation of online nomograms incorporating PIRADS scores to predict clinically significant prostate cancer. Urologic Oncology: Seminars and Original Investigations, 2021, 39, 831.e19-831.e27.	0.8	11
92	Who is the Fastest Man in the World?. American Statistician, 1997, 51, 106-111.	0.9	10
93	A General Framework for Estimation and Inference From Clusters of Features. Journal of the American Statistical Association, 2018, 113, 280-293.	1.8	10
94	Fast numerical optimization for genome sequencing data in population biobanks. Bioinformatics, 2021, 37, 4148-4155.	1.8	9
95	Gene expression deconvolution in linear space. Nature Methods, 2012, 9, 9-9.	9.0	8
96	Prediction and Outlier Detection in Classification Problems. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2022, 84, 524-546.	1.1	8
97	Survival in Follicular Lymphoma: The Stanford Experience, 1960–2003 Blood, 2007, 110, 3428-3428.	0.6	7
98	Using Aggregate Patient Data at the Bedside via an On-Demand Consultation Service. NEJM Catalyst, 2021, 2, .	0.4	6
99	Reluctant Generalised Additive Modelling. International Statistical Review, 2020, 88, S205.	1.1	5
100	A Strategy for Binary Description and Classification. Journal of Computational and Graphical Statistics, 1992, 1, 3-20.	0.9	4
101	Post modelâ€fitting exploration via a "Nextâ€Door―analysis. Canadian Journal of Statistics, 2020, 48, 447-470.	0.6	4
102	Assessment of heterogeneous treatment effect estimation accuracy via matching. Statistics in Medicine, 2021, 40, 3990-4013.	0.8	4
103	Principal componentâ \in guided sparse regression. Canadian Journal of Statistics, 2021, 49, 1222.	0.6	4
104	MassExplorer: a computational tool for analyzing desorption electrospray ionization mass spectrometry data. Bioinformatics, 2021, 37, 3688-3690.	1.8	4
105	Development of a Dynamic Model for Personalized Risk Assessment in Large B-Cell Lymphoma. Blood, 2017, 130, 826-826.	0.6	4
106	A comparison of statistical learning methods on the GUSTO database. Statistics in Medicine, 1998, 17, 2501-2508.	0.8	3
107	Preliminary Report on a Phase I/II Study of Intratumoral Injection of PF-3512676 (CpG 7909), a TLR9 Agonist, Combined with Radiation in Recurrent Low-Grade Lymphomas Blood, 2006, 108, 2716-2716.	0.6	3
108	Tumor-Infiltrating T Cells Are Not Predictive of Clinical Outcome in Follicular Lymphoma Blood, 2006, 108, 824-824.	0.6	3

#	Article	IF	CITATIONS
109	Statistical Measures for the Computer-Aided Diagnosis of Mammographic Masses. Journal of Computational and Graphical Statistics, 1999, 8, 531-543.	0.9	2
110	Reply to J. Wang et al. Journal of Clinical Oncology, 2019, 37, 755-757.	0.8	2
111	Discussion of "Prediction, Estimation, and Attribution―by Bradley Efron. International Statistical Review, 2020, 88, S73.	1.1	2
112	LMO2 Protein Expression Predicts Survival in Patients with Diffuse Large B-Cell Lymphoma in the Pre- and Post-Rituximab Treatment Eras Blood, 2007, 110, 52-52.	0.6	2
113	Reply to D.R. Catchpoole et al. Journal of Clinical Oncology, 2010, 28, e725-e725.	0.8	1
114	Sensitivity analysis for inference with partially identifiable covariance matrices. Computational Statistics, 2014, 29, 529-546.	0.8	1
115	Genomic feature selection by coverage design optimization. Journal of Applied Statistics, 2018, 45, 2658-2676.	0.6	1
116	Paraffin-Based 6-Gene Model Predicts Outcome of Diffuse Large B-Cell Lymphoma Patients Treated with R-CHOP Blood, 2007, 110, 49-49.	0.6	1
117	Gene Expression Profiling Predicts Outcome in De Novo Acute Myeloid Leukemia (AML) with Normal Karyotype: Results of Children's Oncology Group (COG) Study POG #9421 Blood, 2006, 108, 1915-1915.	0.6	1
118	What is Cox's proportional hazards model?. Significance, 2022, 19, 38-39.	0.3	1
119	Noninvasive Cancer Classification Using Diverse Genomic Features in Circulating Tumor DNA. , 2016, , .		0
120	Discussion of "Prediction, Estimation, and Attribution―by Bradley Efron. Journal of the American Statistical Association, 2020, 115, 665-666.	1.8	0
121	Identification of Distinct inv(16) Subclasses in Adult Acute Myeloid Leukemia Based on Gene Expression Profiling Blood, 2004, 104, 2037-2037.	0.6	0
122	The Percentage of Tumor-Infiltrating T Cells Is Not Correlated with Overall Survival in Follicular B-Cell Lymphomas Blood, 2004, 104, 3262-3262.	0.6	0
123	Gene Expression Profiling and FLT3 Status Correlate with Outcome in De Novo Acute Myeloid Leukemia (AML) with Normal Karyotype: Results of Children's Oncology Group (COG) Study POG #9421 Blood, 2005, 106, 2372-2372.	0.6	0
124	A FLT3 Gene-Expression Signature Outperforms FLT3 Status in Predicting Clinical Outcome for Patients with Normal Karyotype AML Blood, 2006, 108, 2311-2311.	0.6	0
125	Anti-Idiotype Antibody Response after Vaccination Correlates with Better Overall Survival in Follicular Lymphoma Blood, 2007, 110, 647-647.	0.6	0
126	Neither CD68+ Nor CD163+ Macrophages Are Associated with Decreased Survival in Follicular Lymphoma. Blood, 2008, 112, 3747-3747.	0.6	0

#	Article	IF	CITATIONS
127	Lymphoma-Expressed VEGF-a, VEGFR-1, VEGFR-2, and Microvessel Density Are Not Predictive of Overall Survival in Follicular Lymphoma. Blood, 2008, 112, 3767-3767.	0.6	Ο
128	MicroRNA Are Useful Biomarkers for Prediction of Response to Therapy and Survival of Patients with Diffuse Large B-Cell Lymphoma Blood, 2009, 114, 624-624.	0.6	0
129	Title is missing!. , 2020, 16, e1009141.		0
130	Title is missing!. , 2020, 16, e1009141.		0
131	Title is missing!. , 2020, 16, e1009141.		0
132	Title is missing!. , 2020, 16, e1009141.		0
133	Title is missing!. , 2020, 16, e1009141.		0
134	Title is missing!. , 2020, 16, e1009141.		0