Zhengping Hao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/7445709/zhengping-hao-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

216 88 9,566 52 h-index g-index citations papers 11,182 8.8 226 6.32 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
216	Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide. <i>Frontiers of Environmental Science and Engineering</i> , 2022 , 16, 1	5.8	O
215	Defect enhanced CoMnNiOx catalysts derived from spent ternary lithium-ion batteries for low-temperature propane oxidation. <i>Applied Catalysis B: Environmental</i> , 2022 , 309, 121231	21.8	3
214	The positive effect of water on acetaldehyde oxidation depended on the reaction temperature and MnO2 structure. <i>Applied Catalysis B: Environmental</i> , 2021 , 303, 120886	21.8	3
213	Effects of mesoporous silica particle size and pore structure on the performance of polymer-mesoporous silica mixed matrix membranes <i>RSC Advances</i> , 2021 , 11, 36577-36586	3.7	1
212	Unraveling the adsorption and diffusion properties of hexamethyldisiloxane on zeolites by static gravimetric analysis. <i>Water Research</i> , 2021 , 197, 117097	12.5	2
211	Remarkable MnO structure-dependent HO promoting effect in HCHO oxidation at room temperature. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125542	12.8	12
2 10	How to achieve complete elimination of Cl-VOCs: A critical review on byproducts formation and inhibition strategies during catalytic oxidation. <i>Chemical Engineering Journal</i> , 2021 , 404, 126534	14.7	51
209	Study on emissions of volatile organic compounds from a typical coking chemical plant in China. <i>Science of the Total Environment</i> , 2021 , 752, 141927	10.2	4
208	Boosting carbonyl sulfide catalytic hydrolysis performance over N-doped Mg-Al oxide derived from MgAl-layered double hydroxide. <i>Journal of Hazardous Materials</i> , 2021 , 407, 124546	12.8	9
207	Efficient defect engineering in Co-Mn binary oxides for low-temperature propane oxidation. <i>Applied Catalysis B: Environmental</i> , 2021 , 282, 119512	21.8	36
206	Influence of oxygen and water content on the formation of polychlorinated organic by-products from catalytic degradation of 1,2-dichlorobenzene over a Pd/ZSM-5 catalyst. <i>Journal of Hazardous Materials</i> , 2021 , 403, 123952	12.8	8
205	High Temperature Adsorption of SO2 on Mixed Oxides Derived from CaAl Hydrotalcite-Like Compounds. <i>Processes</i> , 2021 , 9, 325	2.9	0
204	High-Temperature Selective Oxidation of H2S to Elemental Sulfur on a ESiC-Supported Cerium Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 12798-12810	3.9	1
203	Low-Temperature Direct Dehydrogenation of Propane over Binary Oxide Catalysts: Insights into Geometric Effects and Active Sites. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 12755-12765	8.3	1
202	Promotional effect of Cu additive for the selective catalytic oxidation of n-butylamine over CeZrOx catalyst. <i>Chinese Chemical Letters</i> , 2021 ,	8.1	1
201	Agar-stabilized sulfidated microscale zero-valent iron: Its stability and performance in chromate reduction. <i>Journal of Hazardous Materials</i> , 2021 , 417, 126019	12.8	2
200	Study of heterogeneous reaction of dimethyl sulfide on atmospheric-like particulate TiO. <i>Chemosphere</i> , 2021 , 280, 130771	8.4	1

199	Unprecedented Nonphotomediated Hole () Oxidation System Constructed from Defective Carbon Nanotubes and Superoxides. <i>ACS Central Science</i> , 2021 , 7, 355-364	16.8	3
198	Synergistic effects of Cu species and acidity of Cu-ZSM-5 on catalytic performance for selective catalytic oxidation of n-butylamine. <i>Journal of Environmental Sciences</i> , 2020 , 96, 55-63	6.4	10
197	Catalytic oxidation of o-chlorophenol over Co2XAl (X = Co, Mg, Ca, Ni) hydrotalcite-derived mixed oxide catalysts. <i>Frontiers of Environmental Science and Engineering</i> , 2020 , 14, 1	5.8	6
196	Distribution and formation mechanisms of polychlorinated organic by-products upon the catalytic oxidation of 1,2-dichlorobenzene with palladium-loaded catalysts. <i>Journal of Hazardous Materials</i> , 2020 , 393, 122412	12.8	16
195	Gaseous adsorption of hexamethyldisiloxane on carbons: Isotherms, isosteric heats and kinetics. <i>Chemosphere</i> , 2020 , 247, 125862	8.4	6
194	Selective catalytic oxidation of ammonia over LaMAl11O19[[M = Fe, Cu, Co, and Mn) hexaaluminates catalysts at high temperatures in the Claus process. <i>Catalysis Science and Technology</i> , 2020 , 10, 1477-1491	5.5	3
193	Efficient recovery of hydrogen and sulfur resources over non-sulfide based LaFexAl12-xO19 hexaaluminate catalysts by H2S catalytic decomposition. <i>Applied Catalysis B: Environmental</i> , 2020 , 263, 118354	21.8	9
192	Oxygen and nitrogen co-doped ordered mesoporous carbon materials enhanced the electrochemical selectivity of O reduction to HO. <i>Journal of Colloid and Interface Science</i> , 2020 , 562, 540	349	19
191	Activated Carbon Fibers Prepared by One-Step Activation with CuCl2 for Highly Efficient Gas Adsorption. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 19793-19802	3.9	3
190	Comprehensive review on catalytic degradation of Cl-VOCs under the practical application conditions. <i>Critical Reviews in Environmental Science and Technology</i> , 2020 , 1-45	11.1	12
189	Selective oxidation of H2S over Fe supported on Zr-intercalated Laponite clay mesoporous composite catalysts at low temperature. <i>Catalysis Today</i> , 2020 , 355, 366-374	5.3	8
188	Atomic-Scale Insights into the Low-Temperature Oxidation of Methanol over a Single-Atom Pt1-Co3O4 Catalyst. <i>Advanced Functional Materials</i> , 2019 , 29, 1902041	15.6	62
187	Surface properties enhanced MnxAlO oxide catalysts derived from MnxAl layered double hydroxides for acetone catalytic oxidation at low temperature. <i>Applied Catalysis B: Environmental</i> , 2019 , 251, 295-304	21.8	27
186	Simultaneous redox conversion and sequestration of chromate(VI) and arsenite(III) by iron(III)-alginate based photocatalysis. <i>Applied Catalysis B: Environmental</i> , 2019 , 259, 118046	21.8	28
185	Hydrotalcite-Derived CuxMg3NAlO Oxides for Catalytic Degradation of n-Butylamine with Low Concentration NO and Pollutant-Destruction Mechanism. <i>Industrial & Description Mechanism Industrial & D</i>	3.9	7
184	Recent advances in technologies for the removal of volatile methylsiloxanes: A case in biogas purification process. <i>Critical Reviews in Environmental Science and Technology</i> , 2019 , 49, 2257-2313	11.1	20
183	Recent Advances in the Catalytic Oxidation of Volatile Organic Compounds: A Review Based on Pollutant Sorts and Sources. <i>Chemical Reviews</i> , 2019 , 119, 4471-4568	68.1	597
182	Catalytic oxidation performances of typical oxygenated volatile organic compounds (acetone and acetaldehyde) over MAlO (M = Mn, Co, Ni, Fe) hydrotalcite-derived oxides. <i>Catalysis Today</i> , 2019 , 327, 389-397	5.3	29

181	Hydrotalcite-derived Pd/Co3Mn Al1-O mixed oxides as efficient catalysts for complete oxidation of toluene. <i>Catalysis Today</i> , 2019 , 327, 382-388	5.3	9
180	Hollow mesoporous silica materials with well-ordered cubic Ia3d mesostructured shell for toluene adsorption. <i>Journal of Porous Materials</i> , 2019 , 26, 59-68	2.4	1
179	Fluorine-enhanced Pt/ZSM-5 catalysts for low-temperature oxidation of ethylene. <i>Catalysis Science and Technology</i> , 2018 , 8, 1988-1996	5.5	17
178	Synthesis, characterization and evaluations of the Ag/ZSM-5 for ethylene oxidation at room temperature: Investigating the effect of water and deactivation. <i>Chemical Engineering Journal</i> , 2018 , 347, 808-818	14.7	19
177	Understanding the Promotional Effect of Mn2O3 on Micro-/Mesoporous Hybrid Silica Nanocubic-Supported Pt Catalysts for the Low-Temperature Destruction of Methyl Ethyl Ketone: An Experimental and Theoretical Study. <i>ACS Catalysis</i> , 2018 , 8, 4213-4229	13.1	62
176	Environmentally persistent free radicals mediated removal of Cr(VI) from highly saline water by corn straw biochars. <i>Bioresource Technology</i> , 2018 , 260, 294-301	11	91
175	Catalytic oxidation of 1,2-dichloroethane over three-dimensional ordered meso-macroporous Co3O4/La0.7Sr0.3Fe0.5Co0.5O3: Destruction route and mechanism. <i>Applied Catalysis A: General</i> , 2018 , 553, 1-14	5.1	67
174	Understanding the Active Sites of Ag/Zeolites and Deactivation Mechanism of Ethylene Catalytic Oxidation at Room Temperature. <i>ACS Catalysis</i> , 2018 , 8, 1248-1258	13.1	49
173	Efficient capture of CO2 over ordered micro-mesoporous hybrid carbon nanosphere. <i>Applied Surface Science</i> , 2018 , 439, 113-121	6.7	45
172	Insight into the HS selective catalytic oxidation performance on well-mixed Ce-containing rare earth catalysts derived from MgAlCe layered double hydroxides. <i>Journal of Hazardous Materials</i> , 2018 , 342, 749-757	12.8	37
171	Interfacial Force-Assisted In-Situ Fabrication of Graphene Oxide Membrane for Desalination. <i>ACS Applied Materials & Applied &</i>	9.5	21
170	Catalytic removal of 1,2-dichloroethane over LaSrMnCoO6/H-ZSM-5 composite: insights into synergistic effect and pollutant-destruction mechanism. <i>Catalysis Science and Technology</i> , 2018 , 8, 4503	- 4 : 5 14	29
169	H2S selective catalytic oxidation over Ce substituted La1\(\mathbb{L}\)CexFeO3 perovskite oxides catalyst. Chemical Engineering Journal, 2018 , 348, 831-839	14.7	53
168	Low-cost Scholl-coupling microporous polymer as an efficient solid-phase microextraction coating for the detection of light aromatic compounds. <i>Analytica Chimica Acta</i> , 2018 , 1029, 30-36	6.6	19
167	Highly efficient removal of organic pollutants by ultrahigh-surface-area-ethynylbenzene-based conjugated microporous polymers via adsorptionphotocatalysis synergy. <i>Catalysis Science and Technology</i> , 2018 , 8, 5024-5033	5.5	11
166	Insight into the efficient oxidation of methyl-ethyl-ketone over hierarchically micro-mesostructured Pt/K-(Al)SiO2 nanorod catalysts: Structure-activity relationships and mechanism. <i>Applied Catalysis B: Environmental</i> , 2018 , 226, 220-233	21.8	48
165	Insight into mineralizer modified and tailored scorodite crystal characteristics and leachability for arsenic-rich smelter wastewater stabilization <i>RSC Advances</i> , 2018 , 8, 19560-19569	3.7	14
164	Tuning the micromorphology and exposed facets of MnOx promotes methyl ethyl ketone low-temperature abatement: boosting oxygen activation and electron transmission. <i>Catalysis Science and Technology</i> , 2018 , 8, 3863-3875	5.5	30

(2015-2017)

163	Sphere-Shaped MnO Catalyst with Remarkable Low-Temperature Activity for Methyl-Ethyl-Ketone Combustion. <i>Environmental Science & Environmental Science</i>	10.3	105
162	Modeling and simulation of an improved ammonia-based desulfurization process for Claus tail gas treatment. <i>RSC Advances</i> , 2017 , 7, 23591-23599	3.7	4
161	Continuous CO2 esterification to diethyl carbonate (DEC) at atmospheric pressure: application of porous membranes for in situ H2O removal. <i>Green Chemistry</i> , 2017 , 19, 3595-3600	10	25
160	Adsorption and coadsorption mechanisms of Cr(VI) and organic contaminants on HPO treated biochar. <i>Chemosphere</i> , 2017 , 186, 422-429	8.4	88
159	Catalytic activities and mechanism of formaldehyde oxidation over gold supported on MnO2 microsphere catalysts at room temperature. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 447-457	5.8	22
158	Enhanced performances in catalytic oxidation of o-xylene over hierarchical macro-/mesoporous silica-supported palladium catalysts. <i>Frontiers of Environmental Science and Engineering</i> , 2016 , 10, 458-4	6 58	7
157	Insight into the acidic group-induced nitration mechanism of 2-methyl-4,6-dihydroxypyrimidine (MDP) with nitronium. <i>RSC Advances</i> , 2016 , 6, 80145-80157	3.7	1
156	A superhydrophobic hyper-cross-linked polymer synthesized at room temperature used as an efficient adsorbent for volatile organic compounds. <i>RSC Advances</i> , 2016 , 6, 97048-97054	3.7	14
155	Chemically crosslinked rGO laminate film as an ion selective barrier of composite membrane. Journal of Membrane Science, 2016 , 515, 204-211	9.6	27
154	Effects of acid pretreatment on Fe-ZSM-5 and Fe-beta catalysts for N2O decomposition. <i>Chinese Journal of Catalysis</i> , 2016 , 37, 898-907	11.3	11
153	Layered sphere-shaped TiOltapped with gold nanoparticles on structural defects and their catalysis of formaldehyde oxidation. <i>Journal of Environmental Sciences</i> , 2016 , 39, 77-85	6.4	24
152	Insights into the carbon catalyzed direct dehydrogenation of isobutane by employing modified OMCs. <i>Catalysis Science and Technology</i> , 2016 , 6, 4863-4871	5.5	9
151	Comparision of Chinal volatile organic compound pollution management: a computable general equilibrium approach. <i>Chinese Journal of Population Resources and Environment</i> , 2016 , 14, 298-308	2.1	O
150	Room-temperature isomerization of 1-butene to 2-butene over palladium-loaded silica nanospheres catalyst. <i>Chemical Engineering Journal</i> , 2016 , 299, 1-7	14.7	13
149	Adsorption of benzene, cyclohexane and hexane on ordered mesoporous carbon. <i>Journal of Environmental Sciences</i> , 2015 , 30, 65-73	6.4	88
148	Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams. <i>Chemical Engineering Journal</i> , 2015 , 281, 34-41	14.7	48
147	Comprehensive study of H2S selective catalytic oxidation on combined oxides derived from Mg/Al-V10O28 layered double hydroxides. <i>Applied Catalysis B: Environmental</i> , 2015 , 176-177, 130-138	21.8	41
146	Mesoporous KIT-6 silicapolydimethylsiloxane (PDMS) mixed matrix membranes for gas separation. Journal of Materials Chemistry A, 2015 , 3, 8650-8658	13	45

145	Catalytic behaviors of combined oxides derived from Mg/AlxFe1\mathbb{U}\mathbb{I}\math	5.5	23
144	Physico-chemical characterization and source tracking of black carbon at a suburban site in Beijing. Journal of Environmental Sciences, 2015 , 33, 188-94	6.4	7
143	Hybrids of NiCo2O4 nanorods and nanobundles with graphene as promising electrode materials for supercapacitors. <i>Journal of Colloid and Interface Science</i> , 2015 , 460, 303-9	9.3	40
142	Direct dehydrogenation of isobutane to isobutene over carbon catalysts. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 1214-1222	11.3	10
141	Graphene/MnO 2 hybrid film with high capacitive performance. <i>Electrochimica Acta</i> , 2015 , 154, 300-307	6.7	44
140	High performance Pd catalysts supported on bimodal mesopore silica for the catalytic oxidation of toluene. <i>Chinese Journal of Catalysis</i> , 2015 , 36, 1686-1693	11.3	12
139	Density functional theory study on the reaction of triazol-3-one with nitronium: direct nitration versus acidic group-induced nitration. <i>RSC Advances</i> , 2015 , 5, 25183-25191	3.7	5
138	Study of the Influence of Pore Width on the Disposal of Benzene Employing Tunable OMCs. <i>Industrial & Disposal & Disposal</i>	3.9	10
137	H2S-Selective Catalytic Oxidation: Catalysts and Processes. <i>ACS Catalysis</i> , 2015 , 5, 1053-1067	13.1	180
136	Facile synthesis of catalytically active CeO2 for soot combustion. <i>Catalysis Science and Technology</i> , 2015 , 5, 1941-1952	5.5	54
135	Insights into CeO2-modified NiMgAl oxides for pressurized carbon dioxide reforming of methane. <i>Chemical Engineering Journal</i> , 2015 , 259, 581-593	14.7	43
134	RuO2/graphene hybrid material for high performance electrochemical capacitor. <i>Journal of Power Sources</i> , 2014 , 248, 407-415	8.9	106
133	Topochemical Oxidation Preparation of Regular Hexagonal Manganese Oxide Nanoplates with Birnessite-Type Layered Structure. <i>Crystal Growth and Design</i> , 2014 , 14, 5626-5633	3.5	23
132	Hydrophobic conjugated microporous polymer as a novel adsorbent for removal of volatile organic compounds. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 14028-14037	13	42
131	A new type of ordered mesoporous carbon/polyaniline composites prepared by a two-step nanocasting method for high performance supercapacitor applications. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 16715-16722	13	34
130	Removal of cobalt(II) ion from aqueous solution by chitosan-montmorillonite. <i>Journal of Environmental Sciences</i> , 2014 , 26, 1879-84	6.4	65
129	Insights into the vanadia catalyzed oxidative dehydrogenation of isobutane with CO2. <i>Chinese Journal of Catalysis</i> , 2014 , 35, 1329-1336	11.3	12
128	AdsorptionEemplate preparation of polyanilines with different morphologies and their capacitance. <i>Electrochimica Acta</i> , 2014 , 145, 99-108	6.7	33

127	High-performance NiBiO2 for pressurized carbon dioxide reforming of methane. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 11592-11605	6.7	25
126	Selective Catalytic Oxidation of H2S over Well-Mixed Oxides Derived from Mg2AlxV1 Layered Double Hydroxides. <i>ACS Catalysis</i> , 2014 , 4, 1500-1510	13.1	44
125	Effective catalytic decomposition of nitrous oxide over highly active and stable bimetallic CoIn-mordenite zeolite. <i>Journal of Molecular Catalysis A</i> , 2014 , 395, 202-209		7
124	Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol. <i>Applied Catalysis B: Environmental</i> , 2014 , 147, 156-166	21.8	104
123	Integrated assessment of CO2 reduction technologies in China's cement industry. <i>International Journal of Greenhouse Gas Control</i> , 2014 , 20, 27-36	4.2	32
122	Fe-Beta catalysts prepared by heating wet ion exchange and their catalytic performances on N2O catalytic decomposition and reduction. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2014 , 9, 159-166	1.3	5
121	Highly Active and Stable NiBiO2 Prepared by a Complex-Decomposition Method for Pressurized Carbon Dioxide Reforming of Methane. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 190	77 ² 1 ⁹ 90	86 ⁹
120	Effects of metal and acidic sites on the reaction by-products of butyl acetate oxidation over palladium-based catalysts. <i>Journal of Environmental Sciences</i> , 2014 , 26, 702-7	6.4	6
119	Synthesis of TiO2/ramie fiber composite and its photocatalytic effect on the degradation of a dye in wastewater. <i>Reaction Kinetics, Mechanisms and Catalysis</i> , 2013 , 110, 515-528	1.6	
118	Synthesis of grapheneNiFe2O4 nanocomposites and their electrochemical capacitive behavior. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 6393	13	141
117	Selective catalytic oxidation of HB over iron oxide supported on alumina-intercalated Laponite clay catalysts. <i>Journal of Hazardous Materials</i> , 2013 , 260, 104-11	12.8	71
116	Characterization and assessment of volatile organic compounds (VOCs) emissions from typical industries. <i>Science Bulletin</i> , 2013 , 58, 724-730		102
115	Selective oxidation of H2S over V2O5 supported on CeO2-intercalated Laponite clay catalysts. <i>Catalysis Science and Technology</i> , 2013 , 3, 2778	5.5	36
114	Preparation and capacitance properties of graphene/NiAl layered double-hydroxide nanocomposite. <i>Journal of Colloid and Interface Science</i> , 2013 , 396, 251-7	9.3	65
113	One-Step, Continuous-Flow, Highly Catalytic HydrogenationIsomerization of Dicyclopentadiene to exo-Tetrahydrodicyclopentadiene over Ni-Supported Catalysts for the Production of High-Energy-Density Fuel. <i>Energy & Catalysts (Samp)</i> ; Fuels, 2013, 27, 6339-6347	4.1	20
112	Facile preparation of 3D ordered mesoporous CuOx©eO2 with notably enhanced efficiency for the low temperature oxidation of heteroatom-containing volatile organic compounds. <i>RSC Advances</i> , 2013 , 3, 19639	3.7	37
111	Facilely synthesized Fe2O3graphene nanocomposite as novel electrode materials for supercapacitors with high performance. <i>Journal of Alloys and Compounds</i> , 2013 , 552, 486-491	5.7	119
110	Nanocasting synthesis of graphitized ordered mesoporous carbon using Fe-coated SBA-15 template. <i>Materials Chemistry and Physics</i> , 2013 , 138, 484-489	4.4	12

109	Promotional effects and mechanism of second cations on activity and stability of Co-MOR for nitrous oxide decomposition: UVII is spectroscopy and EXAFS analysis. <i>Chemical Engineering Journal</i> , 2013 , 226, 95-104	14.7	8
108	Preparation and capacitance of graphene/multiwall carbon nanotubes/MnO2 hybrid material for high-performance asymmetrical electrochemical capacitor. <i>Electrochimica Acta</i> , 2013 , 89, 191-198	6.7	98
107	Mesoporous carbon-confined Au catalysts with superior activity for selective oxidation of glucose to gluconic acid. <i>Green Chemistry</i> , 2013 , 15, 1035	10	65
106	Catalytic behavior and reaction routes of MEK oxidation over Pd/ZSM-5 and Pd-Ce/ZSM-5 catalysts. <i>Journal of Hazardous Materials</i> , 2013 , 244-245, 613-20	12.8	36
105	Adsorption properties of benzene and water vapor on hyper-cross-linked polymers. <i>RSC Advances</i> , 2013 , 3, 20523	3.7	24
104	Novel Co-Mg-Al-Ti-O catalyst derived from hydrotalcite-like compound for NO storage/decomposition. <i>Journal of Environmental Sciences</i> , 2012 , 24, 488-93	6.4	11
103	Study of DDT and its derivatives DDD, DDE adsorption and degradation over Fe-SBA-15 at low temperature. <i>Journal of Environmental Sciences</i> , 2012 , 24, 536-40	6.4	18
102	Highly active manganese oxide catalysts for low-temperature oxidation of formaldehyde. <i>Microporous and Mesoporous Materials</i> , 2012 , 151, 397-402	5.3	56
101	Decomposition of nitrous oxide over Co-zeolite catalysts: role of zeolite structure and active site. <i>Catalysis Science and Technology</i> , 2012 , 2, 1249	5.5	32
100	Investigation of nitrous oxide decomposition over highly active and stable bimetallic CoFe-MOR zeolite catalyst: effective removal and mechanism study. <i>Catalysis Science and Technology</i> , 2012 , 2, 105	95.5	13
99	Investigation of Selective Catalytic Reduction of N2O by NH3 over an FelMordenite Catalyst: Reaction Mechanism and O2 Effect. <i>ACS Catalysis</i> , 2012 , 2, 512-520	13.1	54
98	Selective Hydrogenation of Cinnamaldehyde over Pt and Pd Supported on Multiwalled Carbon Nanotubes in a CO2-Expanded Alcoholic Medium. <i>Industrial & Discourse in General Chemistry Research</i> , 2012 , 51, 11112-11121	3.9	41
97	Porous graphitized carbon for adsorptive removal of benzene and the electrothermal regeneration. <i>Environmental Science & Environmental Science & Envi</i>	10.3	48
96	Porous Montmorillonite Heterostructures Directed by a Single Alkyl Ammonium Template for Controlling the Product Distribution of Fischer Tropsch Synthesis over Cobalt. <i>Chemistry of Materials</i> , 2012 , 24, 972-974	9.6	34
95	Supported Nanometric Pd Hierarchical Catalysts for Efficient Toluene Removal: Catalyst Characterization and Activity Elucidation. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 72	14:922	2 ²²
94	Effective desalination by capacitive deionization with functional graphene nanocomposite as novel electrode material. <i>Desalination</i> , 2012 , 299, 96-102	10.3	130
93	Synergistic and competitive adsorption of organic dyes on multiwalled carbon nanotubes. <i>Chemical Engineering Journal</i> , 2012 , 197, 34-40	14.7	161
92	Catalytic combustion of chlorobenzene on the Ln modified Co/HMS. <i>Applied Catalysis B:</i> Environmental, 2012 , 127, 246-254	21.8	23

(2010-2012)

91	Nanometric Pd-confined mesoporous silica as high-efficient catalyst for toluene low temperature removal: Effects of support morphology and textural property. <i>Journal of Industrial and Engineering Chemistry</i> , 2012 , 18, 1598-1605	6.3	18
90	Novel synthesis and formation process of uniform Mn2O3 cubes. <i>CrystEngComm</i> , 2012 , 14, 8253	3.3	14
89	Functional graphene nanocomposite as an electrode for the capacitive removal of FeCl3 from water. <i>Journal of Materials Chemistry</i> , 2012 , 22, 14101		43
88	Cobalt zeolites: Preparation, characterization and catalytic properties for N2O decomposition. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2012 , 7, 502-509	1.3	11
87	Deep catalytic oxidation of benzene, toluene, ethyl acetate over Pd/SBA-15 catalyst: reaction behaviors and kinetics. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2012 , 7, 705-715	1.3	12
86	N2O catalytic reduction by NH3 over Fe-zeolites: Effective removal and active site. <i>Catalysis Communications</i> , 2012 , 18, 151-155	3.2	33
85	Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature. <i>Applied Catalysis B: Environmental</i> , 2012 , 111-112, 46-57	21.8	46
84	CoMOR zeolite catalyst prepared by buffered ion exchange for effective decomposition of nitrous oxide. <i>Journal of Hazardous Materials</i> , 2011 , 192, 1756-65	12.8	18
83	Adsorption and desorption performance of benzene over hierarchically structured carbon-silica aerogel composites. <i>Journal of Hazardous Materials</i> , 2011 , 196, 194-200	12.8	84
82	Catalytic oxidation of benzene over nanostructured porous Co3O4-CeO2 composite catalysts. <i>Journal of Environmental Sciences</i> , 2011 , 23, 2078-86	6.4	34
81	Adsorption performance of VOCs in ordered mesoporous silicas with different pore structures and surface chemistry. <i>Journal of Hazardous Materials</i> , 2011 , 186, 1615-24	12.8	160
80	Investigation of formaldehyde oxidation over Co3O4-Ce2 and Au/Co3O4-CeO2 catalysts at room temperature: effective removal and determination of reaction mechanism. <i>Environmental Science & Eamp; Technology</i> , 2011 , 45, 3628-34	10.3	234
79	China's increasingly positive and active stance on climate change. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	3
78	Sulfur-Resistant NO Decomposition Catalysts Derived from Colla/Till Hydrotalcite-like Compounds. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 6651-6660	3.8	20
77	Development of novel MnO2/nanoporous carbon composite electrodes in capacitive deionization technology. <i>Desalination</i> , 2011 , 276, 199-206	10.3	128
76	Catalytic combustion of benzene on the Pd/nanosize Al-HMS. <i>Microporous and Mesoporous Materials</i> , 2011 , 138, 215-220	5.3	16
<i>75</i>	Mesoporous Co3O4 and Au/Co3O4 catalysts for low-temperature oxidation of trace ethylene. Journal of the American Chemical Society, 2010 , 132, 2608-13	16.4	406
74	Functionalized Mesoporous Silica with Very Large Pores for Cellulase Immobilization. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8353-8362	3.8	123

73	Preparation and investigation of PD/TI-SBA-15 catalysts for catalytic oxidation of benzene. <i>Environmental Progress and Sustainable Energy</i> , 2010 , 29, 435-442	2.5	7
72	Synthesis and characterization of Pd/ZSM-5/MCM-48 biporous catalysts with superior activity for benzene oxidation. <i>Applied Catalysis A: General</i> , 2010 , 382, 167-175	5.1	50
71	Comprehensive investigation of Pd/ZSM-5/MCM-48 composite catalysts with enhanced activity and stability for benzene oxidation. <i>Applied Catalysis B: Environmental</i> , 2010 , 96, 466-475	21.8	82
70	Ligand-assisted preparation of highly active and stable nanometric Pd confined catalysts for deep catalytic oxidation of toluene. <i>Journal of Hazardous Materials</i> , 2010 , 181, 996-1003	12.8	22
69	Hydrophobic micro/mesoporous silica spheres assembled from zeolite precursors in acidic media for aromatics adsorption. <i>Microporous and Mesoporous Materials</i> , 2010 , 133, 115-123	5.3	25
68	Catalytic combustion of methane over mixed oxides derived from CoMg/Al ternary hydrotalcites. Fuel Processing Technology, 2010 , 91, 97-102	7.2	64
67	Catalytic oxidation of NO over TiO2 supported platinum clusters I. Preparation, characterization and catalytic properties. <i>Applied Catalysis B: Environmental</i> , 2010 , 93, 259-266	21.8	66
66	Catalytic oxidation of NO over TiO2 supported platinum clusters. II: Mechanism study by in situ FTIR spectra. <i>Catalysis Today</i> , 2010 , 158, 361-369	5.3	51
65	Synthesis of nanosized Al-HMS and its application in deep oxidation of benzene. <i>Catalysis Today</i> , 2010 , 158, 427-431	5.3	11
64	Templated Silica with Increased Surface Area and Expanded Microporosity: Synthesis, Characterization, and Catalytic Application. <i>Chemical Engineering Journal</i> , 2010 , 162, 901-909	14.7	26
63	A study on the synergistic adsorptive and photocatalytic activities of TiO2Nx/Beta composite catalysts under visible light irradiation. <i>Chemical Engineering Journal</i> , 2010 , 165, 301-309	14.7	24
62	Preparation of binary washcoat deposited on cordierite substrate for catalytic applications. <i>Ceramics International</i> , 2010 , 36, 529-534	5.1	22
61	Removal of DDT from aqueous solutions using mesoporous silica materials. <i>Journal of Chemical Technology and Biotechnology</i> , 2009 , 84, 490-496	3.5	24
60	Effect of pH on DDT degradation in aqueous solution using bimetallic Ni/Fe nanoparticles. <i>Separation and Purification Technology</i> , 2009 , 66, 84-89	8.3	116
59	Fe-mordenite/cordierite monolith for the catalytic decomposition of nitrous oxide. <i>Ceramics International</i> , 2009 , 35, 3097-3101	5.1	19
58	Catalytic Oxidation of Nitric Oxide to Nitrogen Dioxide on Ru-FAU. <i>Catalysis Letters</i> , 2009 , 131, 656-662	2.8	6
57	Characterization of PM2.5/PM2.5IIO and source tracking in the juncture belt between urban and rural areas of Beijing. <i>Science Bulletin</i> , 2009 , 54, 2506-2515		24
56	Solvothermal-induced phase transition and visible photocatalytic activity of nitrogen-doped titania. Journal of Hazardous Materials, 2009 , 163, 273-8	12.8	50

(2008-2009)

55	A study on N2O catalytic decomposition over Co/MgO catalysts. <i>Journal of Hazardous Materials</i> , 2009 , 163, 1332-7	12.8	65
54	Synthesis and hydrophobic adsorption properties of microporous/mesoporous hybrid materials. Journal of Hazardous Materials, 2009 , 164, 1205-12	12.8	27
53	Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media. <i>Journal of Hazardous Materials</i> , 2009 , 171, 459-64	12.8	47
52	Expanding mesoporosity of triblock-copolymer-templated silica under weak synthesis acidity. <i>Journal of Colloid and Interface Science</i> , 2009 , 339, 160-7	9.3	16
51	A comprehensive investigation of influences of NO and O2 on N2O-SCR by CH4 over Fe-USY zeolite. <i>Applied Catalysis B: Environmental</i> , 2009 , 91, 262-268	21.8	9
50	Catalytic oxidation of benzyl alcohol on Au or AuPd nanoparticles confined in mesoporous silica. <i>Applied Catalysis B: Environmental</i> , 2009 , 92, 202-208	21.8	127
49	Oxidation of nitric oxide to nitrogen dioxide over Ru catalysts. <i>Applied Catalysis B: Environmental</i> , 2009 , 88, 224-231	21.8	69
48	Comparative Studies on Porous Material-Supported Pd Catalysts for Catalytic Oxidation of Benzene, Toluene, and Ethyl Acetate. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 6930-6	938	80
47	Promoted and Controllable Self-Assembly of Hydrolyzed Siloxane and Triblock Copolymer under Organic Polyhydroxy Acids. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 6308-6314	3.9	2
46	Improving adsorbent properties of cage-like ordered amine functionalized mesoporous silica with very large pores for bioadsorption. <i>Langmuir</i> , 2009 , 25, 6413-24	4	125
45	Surface-Functionalized Periodic Mesoporous Organosilica Hollow Spheres. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 8673-8682	3.8	64
44	Water/oil microemulsion for the preparation of robust La-hexaaluminates for methane catalytic combustion. <i>Chemical Communications</i> , 2009 , 3225-7	5.8	18
43	Catalytic combustion of methane over La2TM0.3Zr1.7O7[[TM = Mn, Fe, and Co) pyrochlore oxides. <i>Catalysis Communications</i> , 2009 , 10, 1170-1173	3.2	27
42	Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. <i>Journal of Environmental Sciences</i> , 2008 , 20, 1323-7	6.4	132
41	Levels of polycyclic aromatic hydrocarbons in different types of hospital waste incinerator ashes. <i>Science of the Total Environment</i> , 2008 , 397, 24-30	10.2	37
40	Synthesis of mesoporous Co/Ce-SBA-15 materials and their catalytic performance in the catalytic oxidation of benzene. <i>Materials Research Bulletin</i> , 2008 , 43, 2599-2606	5.1	27
39	Catalytic combustion of methane over cobalt doped lanthanum stannate pyrochlore oxide. <i>Catalysis Communications</i> , 2008 , 9, 690-695	3.2	26
38	Wet ion exchanged Fe-USY catalyst for effective N2O decomposition. <i>Catalysis Communications</i> , 2008 , 9, 1745-1748	3.2	9

37	Catalytic combustion of benzene on Co/CeO2/SBA-15 and Co/SBA-15 catalysts. <i>Catalysis Communications</i> , 2008 , 9, 1874-1877	3.2	48
36	Efficient elimination of trace ethylene over nano-gold catalyst under ambient conditions. <i>Environmental Science & Environmental Science & Environment</i>	10.3	39
35	Novel CH4 Combustion Catalysts Derived from Cuto/XLl (X = Fe, Mn, La, Ce) Hydrotalcite-like Compounds. <i>Energy & Double Compounds</i> . 22, 2131-2137	4.1	56
34	Sulfonic acid functionalised SBA-15 as catalysts for Beckmann rearrangement and esterification reaction. <i>Journal of Porous Materials</i> , 2008 , 15, 139-143	2.4	19
33	Mesoporous silica supported cobalt oxide catalysts for catalytic removal of benzene. <i>Journal of Porous Materials</i> , 2008 , 15, 163-169	2.4	46
32	Polycyclic aromatic hydrocarbons from rural household biomass burning in a typical Chinese village. <i>Science in China Series D: Earth Sciences</i> , 2008 , 51, 1013-1020		16
31	Synthesis gas production using oxygen storage materials as oxygen carrier over circulating fluidized bed. <i>Journal of Rare Earths</i> , 2008 , 26, 76-80	3.7	12
30	Effect of calcination temperature and reaction conditions on methane partial oxidation using lanthanum-based perovskite as oxygen donor. <i>Journal of Rare Earths</i> , 2008 , 26, 341-346	3.7	24
29	Comparison of hydrolysis and oxidation reactions of carbonyl sulfide on particle matter. <i>Asia-Pacific Journal of Chemical Engineering</i> , 2008 , 3, 509-513	1.3	0
28	Fabrication and Size-Selective Bioseparation of Magnetic Silica Nanospheres with Highly Ordered Periodic Mesostructure. <i>Advanced Functional Materials</i> , 2008 , 18, 3203-3212	15.6	170
27	Iron-exchanged FAU zeolites: Preparation, characterization and catalytic properties for N2O decomposition. <i>Applied Catalysis A: General</i> , 2008 , 344, 131-141	5.1	60
26	The epoxidation of allyl alcohol on Ti-complex/MCM-48 catalyst. <i>Microporous and Mesoporous Materials</i> , 2008 , 112, 133-137	5.3	7
25	Direct synthesis of lanthanide-containing SBA-15 under weak acidic conditions and its catalytic study. <i>Microporous and Mesoporous Materials</i> , 2008 , 113, 72-80	5.3	37
24	A new and generic preparation method of mesoporous clay composites containing dispersed metal oxide nanoparticles. <i>Microporous and Mesoporous Materials</i> , 2008 , 114, 214-221	5.3	27
23	Heat-induced phase transitions from an aqueous solution to precipitates in a poly(sodium 4-styrenesulfonate)/tetradecyltrimethylammonium bromide system. <i>Chemistry - A European Journal</i> , 2007 , 13, 4782-5	4.8	6
22	Source apportionment for urban PM10 and PM2.5 in the Beijing area. <i>Science Bulletin</i> , 2007 , 52, 608-61	5	39
21	The optimization of preparation, reaction conditions and synthesis gas production by redox cycle using lattice oxygen. <i>Studies in Surface Science and Catalysis</i> , 2007 , 391-396	1.8	3
20	Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation. <i>Materials Research Bulletin</i> , 2006 , 41, 406-413	5.1	45

(2000-2006)

19	Influence of the calcination temperature on the Au/FeOx/Al2O3 catalyst. <i>Journal of Chemical Technology and Biotechnology</i> , 2006 , 81, 1246-1251	3.5	6
18	CeO2-Co3O4 Catalysts for CO Oxidation. <i>Journal of Rare Earths</i> , 2006 , 24, 172-176	3.7	28
17	The effects of transition metal in Sn-based pyrochlores on the methane catalytic combustion. <i>Progress in Natural Science: Materials International</i> , 2005 , 15, 134-138	3.6	11
16	Synthesis of MCM-48 with a high thermal and hydro-thermal stability. <i>Materials Research Bulletin</i> , 2005 , 40, 1775-1780	5.1	14
15	Catalytic combustion of methane on novel catalysts derived from Cu-Mg/Al-hydrotalcites. <i>Catalysis Letters</i> , 2005 , 99, 157-163	2.8	48
14	Synthesis of nanosize mesoporous MCM-48 material. <i>Journal of Nanoscience and Nanotechnology</i> , 2005 , 5, 1752-4	1.3	3
13	The air-borne particulate pollution in Beijingdoncentration, composition, distribution and sources. <i>Atmospheric Environment</i> , 2004 , 38, 5991-6004	5.3	473
12	Photocatalytic degradation of triazine-containing azo dyes in aqueous TiO2 suspensions. <i>Applied Catalysis B: Environmental</i> , 2003 , 42, 47-55	21.8	149
11	Influence of pretreatment conditions on low-temperature CO oxidation over Au/MOx/Al2O3 catalysts. <i>Journal of Molecular Catalysis A</i> , 2003 , 200, 229-238		61
10	Zr-Laponite pillared clay-based nickel catalysts for methane reforming with carbon dioxide. <i>Applied Catalysis A: General</i> , 2003 , 242, 275-286	5.1	46
9	Characterization and photocatalytic activity of noble-metal-supported surface TiO2/SiO2. <i>Applied Catalysis A: General</i> , 2003 , 253, 389-396	5.1	67
8	Study of perovskite-type oxides and their supported Ag derivatives for catalytic oxidation of diesel soot. <i>Journal of Chemical Technology and Biotechnology</i> , 2002 , 77, 800-804	3.5	10
7	Pd-containing perovskite-type oxides used for three-way catalysts. <i>Journal of Molecular Catalysis A</i> , 2002 , 189, 225-232		67
6	Catalytic performance and structural characterization of ferric oxide and its composite oxides supported gold catalysts for low-temperature CO oxidation. <i>Science in China Series B: Chemistry</i> , 2001 , 44, 596-605		10
5	In situ electron paramagnetic resonance (EPR) study of surface oxygen species on Au/ZnO catalyst for low-temperature carbon monoxide oxidation. <i>Applied Catalysis A: General</i> , 2001 , 213, 173-177	5.1	26
4	Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties. <i>Materials Research Bulletin</i> , 2001 , 36, 2357-2363	5.1	76
3	Supported gold catalysts used for ozone decomposition and simultaneous elimination of ozone and carbon monoxide at ambient temperature. <i>Applied Catalysis B: Environmental</i> , 2001 , 33, 217-222	21.8	107
2	Mechanism of Gold Activation in Supported Gold Catalysts for CO Oxidation. <i>Reaction Kinetics and Catalysis Letters</i> , 2000 , 70, 153-160		40

A supported gold catalyst for the elimination of hydrogen from CO2 feed gas in the production of urea. *Reaction Kinetics and Catalysis Letters*, **1996**, 59, 295-300

7