
Yunhao Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7445085/publications.pdf Version: 2024-02-01

<u> Унинао Глакс</u>

#	Article	IF	CITATIONS
1	The fabrication of microcrystalline cellulose-nanoZnO hybrid composites and their application in rubber compounds. Carbohydrate Polymers, 2017, 169, 324-331.	5.1	23
2	Dissolution of cotton by 1-ethyl-3-methylimidazolium acetate studied with time–temperature superposition for three different fibre arrangements. Cellulose, 2021, 28, 715-727.	2.4	15
3	Effects of Replacement of Part of the Silica Reinforcement with Hybrid Modified Microcrystalline Cellulose on the Properties of their Rubber Composites. Journal of Macromolecular Science - Physics, 2018, 57, 243-254.	0.4	9
4	The preparation of microcrystalline cellulose–nanoSiO ₂ hybrid materials and their application in tire tread compounds. Journal of Applied Polymer Science, 2017, 134, .	1.3	8
5	Time temperature superposition of the dissolution of cellulose fibres by the ionic liquid 1-ethyl-3-methylimidazolium acetate with cosolvent dimethyl sulfoxide. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100021.	1.6	7
6	Three methods to measure the dissolution activation energy of cellulosic fibres using time-temperature superposition. Carbohydrate Polymers, 2022, 291, 119541.	5.1	5