Jan-Jakob Sonke

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/74446/jan-jakob-sonke-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

228 8,256 49 83 g-index

245 9,560 2.3 5.98 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
228	The dosimetric and clinical advantages of the GTV-CTV-PTV margins reduction by 6mm in head and neck squamous cell carcinoma: significant acute and late toxicity reduction <i>Radiotherapy and Oncology</i> , 2022 ,	5.3	2
227	Master protocol trial design for technical feasibility of MR-guided radiotherapy. <i>Radiotherapy and Oncology</i> , 2021 , 166, 33-36	5.3	O
226	Gastric deformation models for adaptive radiotherapy: Personalized vs Population-based strategy. <i>Radiotherapy and Oncology</i> , 2021 ,	5.3	1
225	Comparisons of normal tissue complication probability models derived from planned and delivered dose for head and neck cancer patients. <i>Radiotherapy and Oncology</i> , 2021 , 164, 209-215	5.3	
224	Improving linac integrated cone beam computed tomography image quality using tube current modulation. <i>Medical Physics</i> , 2021 , 48, 1739-1749	4.4	
223	Motion-compensated FDG PET/CT for oesophageal cancer. <i>Strahlentherapie Und Onkologie</i> , 2021 , 197, 791-801	4.3	O
222	Validation of a 4D-MRI guided liver stereotactic body radiation therapy strategy for implementation on the MR-linac. <i>Physics in Medicine and Biology</i> , 2021 , 66,	3.8	2
221	Non-small cell lung cancer stage migration as a function of wait times from diagnostic imaging: A pooled analysis from five international centres. <i>Lung Cancer</i> , 2021 , 155, 136-143	5.9	3
220	The dynamics and prognostic value of FDG PET-metrics in weekly monitoring of (chemo)radiotherapy for NSCLC. <i>Radiotherapy and Oncology</i> , 2021 , 160, 107-114	5.3	1
219	The first-in-human implementation of adaptive 4D cone beam CT for lung cancer radiotherapy: 4DCBCT in less time with less dose. <i>Radiotherapy and Oncology</i> , 2021 , 161, 29-34	5.3	0
218	Reduction of GTV to high-risk CTV radiation margin in head and neck squamous cell carcinoma significantly reduced acute and late radiation-related toxicity with comparable outcomes. <i>Radiotherapy and Oncology</i> , 2021 , 162, 170-177	5.3	1
217	Delivered dose-effect analysis of radiation induced rib fractures after thoracic SBRT. <i>Radiotherapy and Oncology</i> , 2021 , 162, 18-25	5.3	0
216	MR-Linac Radiotherapy - The Beam Angle Selection Problem. Frontiers in Oncology, 2021 , 11, 717681	5.3	1
215	A multivariable study of deformable image registration evaluation metrics in 4DCT of thoracic cancer patients. <i>Physics in Medicine and Biology</i> , 2021 , 66, 035019	3.8	O
214	Single-Center Prospective Trial Investigating the Feasibility of Serial FDG-PET Guided Adaptive Radiation Therapy for Head and Neck Cancer. <i>International Journal of Radiation Oncology Biology Physics</i> , 2020 , 108, 960-968	4	5
213	Feasibility of cone beam CT-guided library of plans strategy in pre-operative gastric cancer radiotherapy. <i>Radiotherapy and Oncology</i> , 2020 , 149, 49-54	5.3	2
212	First system for fully-automated multi-criterial treatment planning for a high-magnetic field MR-Linac applied to rectal cancer. <i>Acta Oncolgica</i> , 2020 , 59, 926-932	3.2	8

211	In response to Park, et al. Radiotherapy and Oncology, 2020, 147, 245-246	5.3	
210	The prognostic value of volumetric changes of the primary tumor measured on Cone Beam-CT during radiotherapy for concurrent chemoradiation in NSCLC patients. <i>Radiotherapy and Oncology</i> , 2020 , 146, 44-51	5.3	6
209	Correlating Dose Variables with Local Tumor Control in Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer: A Modeling Study on 1500 Individual Treatments. International Journal of Radiation Oncology Biology Physics, 2020, 107, 579-586	4	16
208	The use of real-world evidence to audit normal tissue complication probability models for acute esophageal toxicity in non-small cell lung cancer patients. <i>Radiotherapy and Oncology</i> , 2020 , 146, 52-57	5.3	1
207	Accurate estimation of daily delivered radiotherapy dose with an external treatment planning system. <i>Physics and Imaging in Radiation Oncology</i> , 2020 , 14, 39-42	3.1	1
206	A biomechanical finite element model to generate a library of cervix CTVs. <i>Medical Physics</i> , 2020 , 47, 3852-3860	4.4	1
205	Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any?. <i>PLoS ONE</i> , 2020 , 15, e0228	3 7 973	18
204	Technical Note: Long-term stability of Hounsfield unit calibration for cone beam computed tomography. <i>Medical Physics</i> , 2020 , 47, 1640-1644	4.4	3
203	LDeform: Longitudinal deformation analysis for adaptive radiotherapy of lung cancer. <i>Medical Physics</i> , 2020 , 47, 132-141	4.4	3
202	Safety and efficacy of reduced dose and margins to involved lymph node metastases in locally advanced NSCLC patients. <i>Radiotherapy and Oncology</i> , 2020 , 143, 66-72	5.3	5
201	Differences between planned and delivered dose for head and neck cancer, and their consequences for normal tissue complication probability and treatment adaptation. <i>Radiotherapy and Oncology</i> , 2020 , 142, 100-106	5.3	8
200	Quantification of Esophageal Tumor Motion and Investigation of Different Image-Guided Correction Strategies. <i>Practical Radiation Oncology</i> , 2020 , 10, 84-92	2.8	9
199	Local and regional treatment response by FDG-PET-CT-scans 4 weeks after concurrent hypofractionated chemoradiotherapy in locally advanced NSCLC. <i>Radiotherapy and Oncology</i> , 2020 , 143, 30-36	5.3	2
198	Estimation of the Aratio of non-small cell lung cancer treated with stereotactic body radiotherapy. <i>Radiotherapy and Oncology</i> , 2020 , 142, 210-216	5.3	6
197	SBRT combined with concurrent chemoradiation in stage III NSCLC: Feasibility study of the phase I Hybrid trial. <i>Radiotherapy and Oncology</i> , 2020 , 142, 224-229	5.3	4
196	Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? 2020 , 15, e0228793		
195	Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? 2020 , 15, e0228793		
194	Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? 2020 , 15, e0228793		

Robust, independent and relevant prognostic 18F-fluorodeoxyglucose positron emission tomography radiomics features in non-small cell lung cancer: Are there any? **2020**, 15, e0228793

192	Recurrent inference machines for reconstructing heterogeneous MRI data. <i>Medical Image Analysis</i> , 2019 , 53, 64-78	15.4	26
191	Evaluating the impact of cone-beam computed tomography scatter mitigation strategies on radiotherapy dose calculation accuracy. <i>Physics and Imaging in Radiation Oncology</i> , 2019 , 10, 35-40	3.1	11
190	Prostate-specific membrane antigen positron emission tomography/computed tomography as a potential tool to assess and guide salivary gland irradiation. <i>Physics and Imaging in Radiation Oncology</i> , 2019 , 9, 65-68	3.1	4
189	Evolutionary Machine Learning for Multi-Objective Class Solutions in Medical Deformable Image Registration. <i>Algorithms</i> , 2019 , 12, 99	1.8	2
188	Correcting geometric image distortions in slice-based 4D-MRI on the MR-linac. <i>Medical Physics</i> , 2019 , 46, 3044-3054	4.4	11
187	Micro cone beam computed tomography for sensitive assessment of radiation-induced late lung toxicity in preclinical models. <i>Radiotherapy and Oncology</i> , 2019 , 138, 17-24	5.3	2
186	Organ Function Preservation Failure after (Chemo)Radiotherapy in Head and Neck Cancer: A Retrospective Cohort Analysis. <i>Otolaryngology - Head and Neck Surgery</i> , 2019 , 161, 288-296	5.5	2
185	Adaptive Radiotherapy for Anatomical Changes. Seminars in Radiation Oncology, 2019, 29, 245-257	5.5	60
184	Pre-hydration in cisplatin-based CCRT: Effects on tumour concentrations and treatment outcome. <i>Radiotherapy and Oncology</i> , 2019 , 134, 30-36	5.3	2
183	Predictive Models to Determine Clinically Relevant Deviations in Delivered Dose for Head and Neck Cancer. <i>Practical Radiation Oncology</i> , 2019 , 9, e422-e431	2.8	7
182	Feasibility of Micro-Computed Tomography Imaging for Direct Assessment of Surgical Resection Margins During Breast-Conserving Surgery. <i>Journal of Surgical Research</i> , 2019 , 241, 160-169	2.5	2
181	Evaluation of plan quality in radiotherapy planning with an MR-linac. <i>Physics and Imaging in Radiation Oncology</i> , 2019 , 10, 19-24	3.1	14
180	SPECT/CT-guided elective nodal irradiation for head and neck cancer: Estimation of clinical benefits using NTCP models. <i>Radiotherapy and Oncology</i> , 2019 , 130, 18-24	5.3	13
179	The impact of margin reduction on outcome and toxicity in head and neck cancer patients treated with image-guided volumetric modulated arc therapy (VMAT). <i>Radiotherapy and Oncology</i> , 2019 , 130, 25-31	5.3	42
178	MRI-guided mid-position liver radiotherapy: Validation of image processing and registration steps. <i>Radiotherapy and Oncology</i> , 2019 , 138, 132-140	5.3	15
177	Results of a multicentre dosimetry audit using a respiratory phantom within the EORTC LungTech trial. <i>Radiotherapy and Oncology</i> , 2019 , 138, 106-113	5.3	1
176	Pareto frontier analysis of spatio-temporal total-variation based four-dimensional cone-beam CT. <i>Biomedical Physics and Engineering Express</i> , 2019 , 5, 065011	1.5	

175	Investigating the impact of patient arm position in an MR-linac on liver SBRT treatment plans. <i>Medical Physics</i> , 2019 , 46, 5144-5151	4.4	2
174	Evolutionary multi-objective meta-optimization of deformation and tissue removal parameters improves the performance of deformable image registration of pre- and post-surgery images 2019 ,		1
173	Modeling radiation pneumonitis of pulmonary stereotactic body radiotherapy: The impact of a local dose-effect relationship for lung perfusion loss. <i>Radiotherapy and Oncology</i> , 2019 , 132, 142-147	5.3	10
172	Mapping of sentinel lymph node drainage using SPECT/CT to tailor elective nodal irradiation in head and neck cancer patients (SUSPECT-2): a single-center prospective trial. <i>BMC Cancer</i> , 2019 , 19, 111	d .8	11
171	The Prognostic Value of Baseline 18F-FDG PET/CT in Human Papillomavirus-Positive Versus Human Papillomavirus-Negative Patients With Oropharyngeal Cancer. <i>Clinical Nuclear Medicine</i> , 2019 , 44, e323	-e ¹ 3728	7
170	Subgroup Survival Analysis in Stage I-II NSCLC Patients With a Central Tumor Partly Treated With Risk-Adapted SBRT. <i>International Journal of Radiation Oncology Biology Physics</i> , 2019 , 103, 132-141	4	13
169	Radiotherapy quality assurance of SBRT for patients with centrally located lung tumours within the multicentre phase II EORTC Lungtech trial: Benchmark case results. <i>Radiotherapy and Oncology</i> , 2019 , 132, 63-69	5.3	7
168	Tumor Trailing for Liver SBRT on the MR-Linac. <i>International Journal of Radiation Oncology Biology Physics</i> , 2019 , 103, 468-478	4	33
167	The acute and late toxicity results of a randomized phase II dose-escalation trial in non-small cell lung cancer (PET-boost trial). <i>Radiotherapy and Oncology</i> , 2019 , 131, 166-173	5.3	31
166	Baseline peripheral blood leukocytosis: Biological marker predicts outcome in oropharyngeal cancer, regardless of HPV-status. <i>Oral Oncology</i> , 2018 , 78, 200-206	4.4	11
165	A secondary analysis of FDG spatio-temporal consistency in the randomized phase II PET-boost trial in stage II-III NSCLC. <i>Radiotherapy and Oncology</i> , 2018 , 127, 259-266	5.3	2
164	Validating a Predictive Atlas of Tumor Shrinkage for Adaptive Radiotherapy of Locally Advanced Lung Cancer. <i>International Journal of Radiation Oncology Biology Physics</i> , 2018 , 102, 978-986	4	11
163	A Self-Sorting Coronal 4D-MRI Method for Daily Image Guidance of Liver Lesions on an MR-LINAC. <i>International Journal of Radiation Oncology Biology Physics</i> , 2018 , 102, 875-884	4	22
162	Margin and PTV volume reduction using a population based library of plans strategy for rectal cancer radiotherapy. <i>Medical Physics</i> , 2018 , 45, 4345-4354	4.4	10
161	Real-time wireless tumor tracking during breast conserving surgery. <i>International Journal of Computer Assisted Radiology and Surgery</i> , 2018 , 13, 531-539	3.9	8
160	Quality assurance of four-dimensional computed tomography in a multicentre trial of stereotactic body radiotherapy of centrally located lung tumours. <i>Physics and Imaging in Radiation Oncology</i> , 2018 , 8, 57-62	3.1	5
159	The developing role of FDG PET imaging for prognostication and radiotherapy target volume delineation in non-small cell lung cancer. <i>Journal of Thoracic Disease</i> , 2018 , 10, S2508-S2521	2.6	7
158	Radiation-Induced Lung Density Changes on CT Scan for NSCLC: No Impact of Dose-Escalation Level or Volume. <i>International Journal of Radiation Oncology Biology Physics</i> , 2018 , 102, 642-650	4	5

157	Magnetic Resonance-based Response Assessment and Dose Adaptation in Human Papilloma Virus Positive Tumors of the Oropharynx treated with Radiotherapy (MR-ADAPTOR): An R-IDEAL stage 2a-2b/Bayesian phase II trial. <i>Clinical and Translational Radiation Oncology</i> , 2018 , 13, 19-23	4.6	20
156	Retrospective self-sorted 4D-MRI for the liver. <i>Radiotherapy and Oncology</i> , 2018 , 127, 474-480	5.3	18
155	Stereotactic Body Radiation Therapy in Octo- and Nonagenarians for the Treatment of Early-Stage Lung Cancer. <i>International Journal of Radiation Oncology Biology Physics</i> , 2017 , 98, 893-899	4	8
154	Dose-effect analysis of radiation induced rib fractures after thoracic SBRT. <i>Radiotherapy and Oncology</i> , 2017 , 123, 176-181	5.3	20
153	Directional sinogram interpolation for motion weighted 4D cone-beam CT reconstruction. <i>Physics in Medicine and Biology</i> , 2017 , 62, 2254-2275	3.8	8
152	Mitigating differential baseline shifts in locally advanced lung cancer patients using an average anatomy model. <i>Medical Physics</i> , 2017 , 44, 3570-3578	4.4	3
151	Reducing 4DCBCT imaging time and dose: the first implementation of variable gantry speed 4DCBCT on a linear accelerator. <i>Physics in Medicine and Biology</i> , 2017 , 62, 4300-4317	3.8	8
150	Dose to heart substructures is associated with non-cancer death after SBRT in stage I-II NSCLC patients. <i>Radiotherapy and Oncology</i> , 2017 , 123, 370-375	5.3	77
149	The feasibility of manual parameter tuning for deformable breast MR image registration from a multi-objective optimization perspective. <i>Physics in Medicine and Biology</i> , 2017 , 62, 5723-5743	3.8	5
148	Predictors and Patterns of Regional Recurrence Following Lung SBRT: A Report From the Elekta Lung Research Group. <i>Clinical Lung Cancer</i> , 2017 , 18, 162-168	4.9	16
147	Modeling the Cellular Response of Lung Cancer to Radiation Therapy for a Broad Range of Fractionation Schedules. <i>Clinical Cancer Research</i> , 2017 , 23, 5469-5479	12.9	26
146	Optimal combination of anti-scatter grids and software correction for CBCT imaging. <i>Medical Physics</i> , 2017 , 44, 4437-4451	4.4	21
145	Supine Breast MRI Using Respiratory Triggering. Academic Radiology, 2017, 24, 818-825	4.3	6
144	A population based statistical model for daily geometric variations in the thorax. <i>Radiotherapy and Oncology</i> , 2017 , 123, 99-105	5.3	5
143	Recurrent oropharyngeal cancer after organ preserving treatment: pattern of failure and survival. <i>European Archives of Oto-Rhino-Laryngology</i> , 2017 , 274, 1691-1700	3.5	8
142	Heart dose associated with overall survival in locally advanced NSCLC patients treated with hypofractionated chemoradiotherapy. <i>Radiotherapy and Oncology</i> , 2017 , 125, 62-65	5.3	23
141	A predictive model for residual disease after (chemo) radiotherapy in oropharyngeal carcinoma: Combined radiological and clinical evaluation of tumor response. <i>Clinical and Translational Radiation Oncology</i> , 2017 , 6, 1-6	4.6	4
140	The impact of breathing amplitude on dose homogeneity in intensity modulated proton therapy. <i>Physics and Imaging in Radiation Oncology</i> , 2017 , 3, 11-16	3.1	4

139	Beyond the margin recipe: the probability of correct target dosage and tumor control in the presence of a dose limiting structure. <i>Physics in Medicine and Biology</i> , 2017 , 62, 7874-7888	3.8	14
138	Redistributed versus homogenous radiotherapy dose for head and neck cancer; a treatment planning study. <i>Physics and Imaging in Radiation Oncology</i> , 2017 , 3, 17-20	3.1	1
137	Analysis of GTV reduction during radiotherapy for oropharyngeal cancer: Implications for adaptive radiotherapy. <i>Radiotherapy and Oncology</i> , 2017 , 122, 224-228	5.3	12
136	Head and Neck Margin Reduction With Adaptive Radiation Therapy: Robustness of Treatment Plans Against Anatomy Changes. <i>International Journal of Radiation Oncology Biology Physics</i> , 2016 , 96, 653-60	4	32
135	Effects of anatomical changes on pencil beam scanning proton plans in locally advanced NSCLC patients. <i>Radiotherapy and Oncology</i> , 2016 , 120, 286-92	5.3	35
134	Image-guided navigation surgery for pelvic malignancies using electromagnetic tracking 2016 ,		2
133	An MRI-based mid-ventilation approach for radiotherapy of the liver. <i>Radiotherapy and Oncology</i> , 2016 , 121, 276-280	5.3	14
132	The first implementation of respiratory triggered 4DCBCT on a linear accelerator. <i>Physics in Medicine and Biology</i> , 2016 , 61, 3488-99	3.8	12
131	Validation of High-Risk Computed Tomography Features for Detection of Local Recurrence After Stereotactic Body Radiation Therapy for Early-Stage Non-Small Cell Lung Cancer. <i>International Journal of Radiation Oncology Biology Physics</i> , 2016 , 96, 134-41	4	25
130	Lungtech, a phase II EORTC trial of SBRT for centrally located lung tumours - a clinical physics perspective. <i>Radiation Oncology</i> , 2016 , 11, 7	4.2	26
129	Adverse event development in clinical oncology trials. <i>Lancet Oncology, The</i> , 2016 , 17, e263	21.7	2
128	Late follow-up of the randomized radiation and concomitant high-dose intra-arterial or intravenous cisplatin (RADPLAT) trial for advanced head and neck cancer. <i>Head and Neck</i> , 2016 , 38 Suppl 1, E488-93	4.2	8
127	Intrafraction Motion in Stereotactic Body Radiation Therapy for Non-Small Cell Lung Cancer: Intensity Modulated Radiation Therapy Versus Volumetric Modulated Arc Therapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2016 , 95, 835-43	4	9
126	Validation of automatic segmentation of ribs for NTCP modeling. <i>Radiotherapy and Oncology</i> , 2016 , 118, 528-34	5.3	6
125	Differential analysis of local and regional failure in locally advanced non-small cell lung cancer patients treated with concurrent chemoradiotherapy. <i>Radiotherapy and Oncology</i> , 2016 , 118, 447-52	5.3	26
124	Clinical introduction of image lag correction for a cone beam CT system. <i>Medical Physics</i> , 2016 , 43, 1057	'- 6 44	7
123	Fractures of thoracic vertebrae in patients with locally advanced non-small cell lung carcinoma treated with intensity modulated radiotherapy. <i>Radiotherapy and Oncology</i> , 2016 , 118, 437-41	5.3	8
122	Comparing position and orientation accuracy of different electromagnetic sensors for tracking during interventions. <i>International Journal of Computer Assisted Radiology and Surgery</i> , 2016 , 11, 1487-9	8 ^{3.9}	17

121	Prediction of Early Death in Patients with Early-Stage NSCLC-Can We Select Patients without a Potential Benefit of SBRT as a Curative Treatment Approach?. <i>Journal of Thoracic Oncology</i> , 2016 , 11, 1132-9	8.9	22
120	Multiple training interventions significantly improve reproducibility of PET/CT-based lung cancer radiotherapy target volume delineation using an IAEA study protocol. <i>Radiotherapy and Oncology</i> , 2016 , 121, 39-45	5.3	11
119	Clinical evaluation of respiration-induced attenuation uncertainties in pulmonary 3D PET/CT. <i>EJNMMI Physics</i> , 2015 , 2, 4	4.4	9
118	Feasibility of MRI-based reference images for image-guided radiotherapy of the pelvis with either cone-beam computed tomography or planar localization images. <i>Acta Oncolgica</i> , 2015 , 54, 889-95	3.2	35
117	Target delineation variability and corresponding margins of peripheral early stage NSCLC treated with stereotactic body radiotherapy. <i>Radiotherapy and Oncology</i> , 2015 , 114, 361-6	5.3	24
116	Dynamic collimator angle adjustments during volumetric modulated arc therapy to account for prostate rotations. <i>International Journal of Radiation Oncology Biology Physics</i> , 2015 , 91, 1009-16	4	8
115	Tumour delineation in oesophageal cancer - A prospective study of delineation in PET and CT with and without endoscopically placed clip markers. <i>Radiotherapy and Oncology</i> , 2015 , 116, 269-75	5.3	18
114	A 1.5 T transverse magnetic field in radiotherapy of rectal cancer: Impact on the dose distribution. <i>Medical Physics</i> , 2015 , 42, 7182-9	4.4	14
113	Portal dosimetry in wedged beams. Journal of Applied Clinical Medical Physics, 2015, 16, 5375	2.3	2
112	The effect of age in breast conserving therapy: a retrospective analysis on pathology and clinical outcome data. <i>Radiotherapy and Oncology</i> , 2015 , 114, 314-21	5.3	5
111	A simulation framework for modeling tumor control probability in breast conserving therapy. <i>Radiotherapy and Oncology</i> , 2014 , 111, 289-95	5.3	5
110	Combined recipe for clinical target volume and planning target volume margins. <i>International Journal of Radiation Oncology Biology Physics</i> , 2014 , 88, 708-14	4	14
109	Effect of compressed sensing reconstruction on target and organ delineation in cone-beam CT of head-and-neck and breast cancer patients. <i>Radiotherapy and Oncology</i> , 2014 , 112, 413-7	5.3	7
108	Intra thoracic anatomical changes in lung cancer patients during the course of radiotherapy. <i>Radiotherapy and Oncology</i> , 2014 , 113, 392-7	5.3	78
107	Challenges of radiotherapy: report on the 4D treatment planning workshop 2013. <i>Physica Medica</i> , 2014 , 30, 809-15	2.7	29
106	Deformable image registration for adaptive radiation therapy of head and neck cancer: accuracy and precision in the presence of tumor changes. <i>International Journal of Radiation Oncology Biology Physics</i> , 2014 , 90, 680-7	4	48
105	Differential motion between mediastinal lymph nodes and primary tumor in radically irradiated lung cancer patients. <i>International Journal of Radiation Oncology Biology Physics</i> , 2014 , 90, 959-66	4	30
104	Treatment adherence in concurrent chemoradiation in patients with locally advanced non-small cell lung carcinoma: results of daily intravenous prehydration. <i>Radiotherapy and Oncology</i> , 2014 , 110, 488-9	2 ^{5.3}	6

(2013-2014)

103	Alpha/beta ratio for normal lung tissue as estimated from lung cancer patients treated with stereotactic body and conventionally fractionated radiation therapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2014 , 88, 224-8	4	19
102	Mid-ventilation based PTV margins in Stereotactic Body Radiotherapy (SBRT): a clinical evaluation. <i>Radiotherapy and Oncology</i> , 2014 , 110, 511-6	5.3	50
101	Dose-response relationship with clinical outcome for lung stereotactic body radiotherapy (SBRT) delivered via online image guidance. <i>Radiotherapy and Oncology</i> , 2014 , 110, 499-504	5.3	104
100	Magnetic resonance-guided adaptive radiotherapy: a solution to the future. <i>Seminars in Radiation Oncology</i> , 2014 , 24, 227-32	5.5	91
99	Improved image quality of cone beam CT scans for radiotherapy image guidance using fiber-interspaced antiscatter grid. <i>Medical Physics</i> , 2014 , 41, 061910	4.4	17
98	Reproducibility of the MRI-defined spinal cord position in stereotactic radiotherapy for spinal oligometastases. <i>Radiotherapy and Oncology</i> , 2014 , 113, 230-4	5.3	3
97	4D CT amplitude binning for the generation of a time-averaged 3D mid-position CT scan. <i>Physics in Medicine and Biology</i> , 2014 , 59, 5517-29	3.8	16
96	Local interfractional setup reproducibility for 2 individual head and neck supports in head and neck cancer patients. <i>Practical Radiation Oncology</i> , 2014 , 4, 448-54	2.8	4
95	Volume changes in soft tissue sarcomas during preoperative radiotherapy of extremities evaluated using cone-beam CT. <i>Journal of Radiation Oncology</i> , 2013 , 2, 55-62	0.7	20
94	Accuracy evaluation of a 3-dimensional surface imaging system for guidance in deep-inspiration breath-hold radiation therapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2013 , 85, 53	6- 4 2	51
93	Local dose-effect relations for lung perfusion post stereotactic body radiotherapy. <i>Radiotherapy and Oncology</i> , 2013 , 107, 398-402	5.3	26
92	Adaptive radiotherapy with an average anatomy model: evaluation and quantification of residual deformations in head and neck cancer patients. <i>Radiotherapy and Oncology</i> , 2013 , 109, 463-8	5.3	24
91	Prognostic parameters for acute esophagus toxicity in intensity modulated radiotherapy and concurrent chemotherapy for locally advanced non-small cell lung cancer. <i>Radiotherapy and Oncology</i> , 2013 , 107, 392-7	5.3	30
90	Assessment of set-up variability during deep inspiration breath hold radiotherapy for breast cancer patients by 3D-surface imaging. <i>Radiotherapy and Oncology</i> , 2013 , 106, 225-30	5.3	62
89	Registration accuracy and image quality of time averaged mid-position CT scans for liver SBRT. <i>Radiotherapy and Oncology</i> , 2013 , 109, 404-8	5.3	24
88	Hybrid registration of prostate and seminal vesicles for image guided radiation therapy. International Journal of Radiation Oncology Biology Physics, 2013, 86, 177-82	4	11
87	Required target margins for image-guided lung SBRT: Assessment of target position intrafraction and correction residuals. <i>Practical Radiation Oncology</i> , 2013 , 3, 67-73	2.8	19
86	Microscopic disease extensions as a risk factor for loco-regional recurrence of NSCLC after SBRT. <i>Radiotherapy and Oncology</i> , 2013 , 109, 26-31	5.3	15

85	Severe late esophagus toxicity in NSCLC patients treated with IMRT and concurrent chemotherapy. <i>Radiotherapy and Oncology</i> , 2013 , 108, 337-41	5.3	42
84	Lack of a dose-effect relationship for pulmonary function changes after stereotactic body radiation therapy for early-stage non-small cell lung cancer. <i>International Journal of Radiation Oncology Biology Physics</i> , 2013 , 85, 1074-81	4	39
83	PET motion compensation for radiation therapy using a CT-based mid-position motion model: methodology and clinical evaluation. <i>International Journal of Radiation Oncology Biology Physics</i> , 2013 , 87, 394-400	4	17
82	Motion compensated digital tomosynthesis. <i>Radiotherapy and Oncology</i> , 2013 , 109, 398-403	5.3	9
81	Adaptive and innovative Radiation Treatment FOR improving Cancer treatment outcomE (ARTFORCE); a randomized controlled phase II trial for individualized treatment of head and neck cancer. <i>BMC Cancer</i> , 2013 , 13, 84	4.8	74
80	Relating acute esophagitis to radiotherapy dose using FDG-PET in concurrent chemo-radiotherapy for locally advanced non-small cell lung cancer. <i>Radiotherapy and Oncology</i> , 2013 , 106, 118-23	5.3	37
79	Directional sinogram interpolation for sparse angular acquisition in cone-beam computed tomography. <i>Journal of X-Ray Science and Technology</i> , 2013 , 21, 481-96	2.1	8
78	Deformable image registration by multi-objective optimization using a dual-dynamic transformation model to account for large anatomical differences 2013 ,		5
77	Respiratory Motion Correction in Cone-Beam CT for Image-Guided Radiotherapy 2013 , 319-334		
76	A collaborative analysis of stereotactic lung radiotherapy outcomes for early-stage non-small-cell lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. Journal of Thoracic Oncology, 2012 , 7, 1382-93	8.9	162
76 75	lung cancer using daily online cone-beam computed tomography image-guided radiotherapy.	8.9	162
	lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. Journal of Thoracic Oncology, 2012, 7, 1382-93 Quantification of the variability of diaphragm motion and implications for treatment margin		
75	lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 1382-93 Quantification of the variability of diaphragm motion and implications for treatment margin construction. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e399-407 Image-guided radiotherapy for left-sided breast cancer patients: geometrical uncertainty of the	4	44
75 74	lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 1382-93 Quantification of the variability of diaphragm motion and implications for treatment margin construction. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e399-407 Image-guided radiotherapy for left-sided breast cancer patients: geometrical uncertainty of the heart. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e647-55 Evaluation of tumor shape variability in head-and-neck cancer patients over the course of radiation therapy using implanted gold markers. <i>International Journal of Radiation Oncology Biology Physics</i> ,	4 4	29
75 74 73	lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 1382-93 Quantification of the variability of diaphragm motion and implications for treatment margin construction. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e399-407 Image-guided radiotherapy for left-sided breast cancer patients: geometrical uncertainty of the heart. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e647-55 Evaluation of tumor shape variability in head-and-neck cancer patients over the course of radiation therapy using implanted gold markers. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 84, e201-7 Acute esophagus toxicity in lung cancer patients after intensity modulated radiation therapy and	4 4	44 29 13
75 74 73 72	lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 1382-93 Quantification of the variability of diaphragm motion and implications for treatment margin construction. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e399-407 Image-guided radiotherapy for left-sided breast cancer patients: geometrical uncertainty of the heart. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e647-55 Evaluation of tumor shape variability in head-and-neck cancer patients over the course of radiation therapy using implanted gold markers. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 84, e201-7 Acute esophagus toxicity in lung cancer patients after intensity modulated radiation therapy and concurrent chemotherapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 84, e223-8 Modeling local control after hypofractionated stereotactic body radiation therapy for stage I non-small cell lung cancer: a report from the elekta collaborative lung research group. <i>International</i>	4 4 4	44291356
75 74 73 72 71	lung cancer using daily online cone-beam computed tomography image-guided radiotherapy. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 1382-93 Quantification of the variability of diaphragm motion and implications for treatment margin construction. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e399-407 Image-guided radiotherapy for left-sided breast cancer patients: geometrical uncertainty of the heart. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 82, e647-55 Evaluation of tumor shape variability in head-and-neck cancer patients over the course of radiation therapy using implanted gold markers. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 84, e201-7 Acute esophagus toxicity in lung cancer patients after intensity modulated radiation therapy and concurrent chemotherapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 84, e223-8 Modeling local control after hypofractionated stereotactic body radiation therapy for stage I non-small cell lung cancer: a report from the elekta collaborative lung research group. <i>International Journal of Radiation Oncology Biology Physics</i> , 2012 , 84, e379-84 Repeat CT assessed CTV variation and PTV margins for short- and long-course pre-operative RT of	4 4 4	4429135643

(2011-2012)

67	Impact of negative margin width on local recurrence in breast conserving therapy. <i>Radiotherapy and Oncology</i> , 2012 , 104, 148-54	5.3	4
66	Quality assurance for image-guided radiation therapy utilizing CT-based technologies: a report of the AAPM TG-179. <i>Medical Physics</i> , 2012 , 39, 1946-63	4.4	174
65	Mediastinal lymph node position variability in non-small cell lung cancer patients treated with radical irradiation. <i>Radiotherapy and Oncology</i> , 2012 , 105, 150-4	5.3	15
64	3D surface imaging for monitoring intrafraction motion in frameless stereotactic body radiotherapy of lung cancer. <i>Radiotherapy and Oncology</i> , 2012 , 105, 155-60	5.3	19
63	In aqua vivo EPID dosimetry. <i>Medical Physics</i> , 2012 , 39, 367-77	4.4	50
62	Validation of deformable registration in head and neck cancer using analysis of variance. <i>Medical Physics</i> , 2012 , 39, 6879-84	4.4	19
61	Influence of the number of elongated fiducial markers on the localization accuracy of the prostate. <i>Physics in Medicine and Biology</i> , 2012 , 57, 6211-26	3.8	10
60	Is there a lower limit of pretreatment pulmonary function for safe and effective stereotactic body radiotherapy for early-stage non-small cell lung cancer?. <i>Journal of Thoracic Oncology</i> , 2012 , 7, 542-51	8.9	77
59	Application of 3D surface imaging in breast cancer radiotherapy 2012 ,		2
58	Multi-objective optimization for deformable image registration: proof of concept 2012,		3
58 57	Multi-objective optimization for deformable image registration: proof of concept 2012 , Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method. <i>Medical Physics</i> , 2012 , 39, 5592-602	4.4	3 53
	Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means	4.4	
57	Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method. <i>Medical Physics</i> , 2012 , 39, 5592-602 Directional interpolation for motion weighted 4D cone-beam CT reconstruction. <i>Lecture Notes in</i>		53
57 56	Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method. <i>Medical Physics</i> , 2012 , 39, 5592-602 Directional interpolation for motion weighted 4D cone-beam CT reconstruction. <i>Lecture Notes in Computer Science</i> , 2012 , 15, 181-8 Comparative study of respiratory motion correction techniques in cone-beam computed	0.9	53
57 56 55	Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method. <i>Medical Physics</i> , 2012 , 39, 5592-602 Directional interpolation for motion weighted 4D cone-beam CT reconstruction. <i>Lecture Notes in Computer Science</i> , 2012 , 15, 181-8 Comparative study of respiratory motion correction techniques in cone-beam computed tomography. <i>Radiotherapy and Oncology</i> , 2011 , 100, 356-9 A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with	o.9 5·3	53 3 32
57 56 55 54	Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method. <i>Medical Physics</i> , 2012 , 39, 5592-602 Directional interpolation for motion weighted 4D cone-beam CT reconstruction. <i>Lecture Notes in Computer Science</i> , 2012 , 15, 181-8 Comparative study of respiratory motion correction techniques in cone-beam computed tomography. <i>Radiotherapy and Oncology</i> , 2011 , 100, 356-9 A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation. <i>Radiotherapy and Oncology</i> , 2011 , 100, 365-9 Image-guided radiotherapy for breast cancer patients: surgical clips as surrogate for breast excision	0.95.35.3	5333232
57 56 55 54 53	Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method. <i>Medical Physics</i> , 2012 , 39, 5592-602 Directional interpolation for motion weighted 4D cone-beam CT reconstruction. <i>Lecture Notes in Computer Science</i> , 2012 , 15, 181-8 Comparative study of respiratory motion correction techniques in cone-beam computed tomography. <i>Radiotherapy and Oncology</i> , 2011 , 100, 356-9 A novel method for megavoltage scatter correction in cone-beam CT acquired concurrent with rotational irradiation. <i>Radiotherapy and Oncology</i> , 2011 , 100, 365-9 Image-guided radiotherapy for breast cancer patients: surgical clips as surrogate for breast excision cavity. <i>International Journal of Radiation Oncology Biology Physics</i> , 2011 , 81, e187-95 Residual seminal vesicle displacement in marker-based image-guided radiotherapy for prostate cancer and the impact on margin design. <i>International Journal of Radiation Oncology Biology Physics</i> ,	0.95.35.34	 53 3 32 32 27

49	Catching errors with in vivo EPID dosimetry. <i>Medical Physics</i> , 2010 , 37, 2638-44	4.4	159
48	Correction strategies to manage deformations in head-and-neck radiotherapy. <i>Radiotherapy and Oncology</i> , 2010 , 94, 199-205	5.3	37
47	First clinical experience with a multiple region of interest registration and correction method in radiotherapy of head-and-neck cancer patients. <i>Radiotherapy and Oncology</i> , 2010 , 94, 213-7	5.3	37
46	3D Dosimetric verification of volumetric-modulated arc therapy by portal dosimetry. <i>Radiotherapy and Oncology</i> , 2010 , 94, 181-7	5.3	142
45	Normal Tissue Complication Probability after hypofractionation increased due to the high dose per fraction or the high total Biological Equivalent Dose?. <i>Radiotherapy and Oncology</i> , 2010 , 94, 388	5.3	2
44	2D AND 3D dose verification at The Netherlands Cancer InstituteAntoni van Leeuwenhoek Hospital using EPIDs. <i>Journal of Physics: Conference Series</i> , 2010 , 250, 012020	0.3	8
43	Adaptive radiotherapy for lung cancer. Seminars in Radiation Oncology, 2010, 20, 94-106	5.5	145
42	Interfraction and intrafraction changes in amplitude of breathing motion in stereotactic liver radiotherapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2010 , 77, 918-25	4	87
41	Clinical results of image-guided deep inspiration breath hold breast irradiation. <i>International Journal of Radiation Oncology Biology Physics</i> , 2010 , 78, 1345-51	4	107
40	Radiation pneumonitis after hypofractionated radiotherapy: evaluation of the LQ(L) model and different dose parameters. <i>International Journal of Radiation Oncology Biology Physics</i> , 2010 , 77, 1596-	60 ³	50
39	Breast patient setup error assessment: comparison of electronic portal image devices and cone-beam computed tomography matching results. <i>International Journal of Radiation Oncology Biology Physics</i> , 2010 , 78, 1235-43	4	84
38	State-of-the-art lung cancer radiation therapy. Expert Review of Anticancer Therapy, 2009, 9, 1353-63	3.5	13
37	Method comparison of automated matching software-assisted cone-beam CT and stereoscopic kilovoltage x-ray positional verification image-guided radiation therapy for head and neck cancer: a prospective analysis. <i>Physics in Medicine and Biology</i> , 2009 , 54, 7401-15	3.8	9
36	Quantifying interfraction and intrafraction tumor motion in lung stereotactic body radiotherapy using respiration-correlated cone beam computed tomography. <i>International Journal of Radiation Oncology Biology Physics</i> , 2009 , 75, 688-95	4	129
35	Frameless stereotactic body radiotherapy for lung cancer using four-dimensional cone beam CT guidance. <i>International Journal of Radiation Oncology Biology Physics</i> , 2009 , 74, 567-74	4	217
34	Setup uncertainties of anatomical sub-regions in head-and-neck cancer patients after offline CBCT guidance. <i>International Journal of Radiation Oncology Biology Physics</i> , 2009 , 73, 1566-73	4	131
33	Effects of respiration-induced density variations on dose distributions in radiotherapy of lung cancer. <i>International Journal of Radiation Oncology Biology Physics</i> , 2009 , 74, 1266-75	4	41
32	Inter- and intrafraction variability in liver position in non-breath-hold stereotactic body radiotherapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2009 , 75, 302-8	4	114

(2007-2009)

31	Strategies for online organ motion correction for intensity-modulated radiotherapy of prostate cancer: prostate, rectum, and bladder dose effects. <i>International Journal of Radiation Oncology Biology Physics</i> , 2009 , 75, 1254-60	4	41
30	A simple backprojection algorithm for 3D in vivo EPID dosimetry of IMRT treatments. <i>Medical Physics</i> , 2009 , 36, 3310-21	4.4	114
29	On-the-fly motion-compensated cone-beam CT using an a priori model of the respiratory motion. <i>Medical Physics</i> , 2009 , 36, 2283-96	4.4	102
28	Re: Dyspnea evolution after high-dose radiotherapy in patients with non-small cell lung cancer. <i>Radiotherapy and Oncology</i> , 2009 , 91, 461; author reply 461-2	5.3	1
27	Radiation pneumonitis in patients treated for malignant pulmonary lesions with hypofractionated radiation therapy. <i>Radiotherapy and Oncology</i> , 2009 , 91, 307-13	5.3	114
26	Target volume shape variation during hypo-fractionated preoperative irradiation of rectal cancer patients. <i>Radiotherapy and Oncology</i> , 2009 , 92, 202-9	5.3	55
25	Target volume shape variation during irradiation of rectal cancer patients in supine position: comparison with prone position. <i>Radiotherapy and Oncology</i> , 2009 , 93, 285-92	5.3	36
24	3D in vivo dose verification of entire hypo-fractionated IMRT treatments using an EPID and cone-beam CT. <i>Radiotherapy and Oncology</i> , 2008 , 86, 35-42	5.3	64
23	Reconstruction of a time-averaged midposition CT scan for radiotherapy planning of lung cancer patients using deformable registration. <i>Medical Physics</i> , 2008 , 35, 3998-4011	4.4	102
22	Breast-conserving therapy: radiotherapy margins for breast tumor bed boost. <i>International Journal of Radiation Oncology Biology Physics</i> , 2008 , 72, 941-8	4	35
21	Adaptive radiotherapy for prostate cancer using kilovoltage cone-beam computed tomography: first clinical results. <i>International Journal of Radiation Oncology Biology Physics</i> , 2008 , 70, 75-82	4	346
20	Variability of four-dimensional computed tomography patient models. <i>International Journal of Radiation Oncology Biology Physics</i> , 2008 , 70, 590-8	4	204
19	Comparison of different strategies to use four-dimensional computed tomography in treatment planning for lung cancer patients. <i>International Journal of Radiation Oncology Biology Physics</i> , 2008 , 70, 1229-38	4	203
18	The influence of a dietary protocol on cone beam CT-guided radiotherapy for prostate cancer patients. <i>International Journal of Radiation Oncology Biology Physics</i> , 2008 , 71, 1279-86	4	73
17	On-the-fly motion-compensated cone-beam CT using an a priori motion model. <i>Lecture Notes in Computer Science</i> , 2008 , 11, 729-36	0.9	11
16	Replacing pretreatment verification with in vivo EPID dosimetry for prostate IMRT. <i>International Journal of Radiation Oncology Biology Physics</i> , 2007 , 67, 1568-77	4	92
15	Kilo-voltage cone-beam computed tomography setup measurements for lung cancer patients; first clinical results and comparison with electronic portal-imaging device. <i>International Journal of Radiation Oncology Biology Physics</i> , 2007 , 68, 555-61	4	107
14	Strategy for online correction of rotational organ motion for intensity-modulated radiotherapy of prostate cancer. <i>International Journal of Radiation Oncology Biology Physics</i> , 2007 , 69, 1608-17	4	36

13	A fast algorithm for gamma evaluation in 3D. <i>Medical Physics</i> , 2007 , 34, 1647-54	4.4	117	
12	Exploring breathing pattern irregularity with projection-based method. <i>Medical Physics</i> , 2006 , 33, 249	1-9 _{4.4}	27	
11	Clinical experience with EPID dosimetry for prostate IMRT pre-treatment dose verification. <i>Medical Physics</i> , 2006 , 33, 3921-30	4.4	65	
10	Comparison of ghosting effects for three commercial a-Si EPIDs. <i>Medical Physics</i> , 2006 , 33, 2448-51	4.4	55	
9	Accurate two-dimensional IMRT verification using a back-projection EPID dosimetry method. <i>Medical Physics</i> , 2006 , 33, 259-73	4.4	165	
8	Anatomy changes in radiotherapy detected using portal imaging. <i>Radiotherapy and Oncology</i> , 2006 , 79, 211-7	5.3	29	
7	Mid-ventilation CT scan construction from four-dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients. <i>International Journal of Radiation Oncology Biology Physics</i> , 2006 , 65, 1560-71	4	219	
6	Automatic prostate localization on cone-beam CT scans for high precision image-guided radiotherapy. <i>International Journal of Radiation Oncology Biology Physics</i> , 2005 , 63, 975-84	4	165	
5	Respiratory correlated cone beam CT. <i>Medical Physics</i> , 2005 , 32, 1176-86	4.4	483	
4	The long-term stability of amorphous silicon flat panel imaging devices for dosimetry purposes. <i>Medical Physics</i> , 2004 , 31, 2989-95	4.4	74	
3	Leaf trajectory verification during dynamic intensity modulated radiotherapy using an amorphous silicon flat panel imager. <i>Medical Physics</i> , 2004 , 31, 389-95	4.4	22	
2	Dose-response and ghosting effects of an amorphous silicon electronic portal imaging device. <i>Medical Physics</i> , 2004 , 31, 285-95	4.4	133	
1	Focal spot motion of linear accelerators and its effect on portal image analysis. <i>Medical Physics</i> , 2003 , 30, 1067-75	4.4	20	