Yingchun Fu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7444506/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomineralization-mimetic growth of ultrahigh-load metal-organic frameworks on inert glass fibers to prepare hybrid membranes for collecting organic hazards in unconventional environment. Chemical Engineering Journal, 2022, 430, 132956.	6.6	9
2	Monovalent Antigen-Induced Aggregation (MAA) Biosensors Using Immunomagnetic Beads in Both Sample Separation and Signal Generation for Label-Free Detection of Enrofloxacin. ACS Applied Materials & Interfaces, 2022, 14, 8816-8823.	4.0	9
3	A CRISPR-Cas12a-powered magnetic relaxation switching biosensor for the sensitive detection of Salmonella. Biosensors and Bioelectronics, 2022, 213, 114437.	5.3	25
4	Chemical and electrochemical conversion of magnetic nanoparticles to Prussian blue for label-free and refreshment-enhanced electrochemical biosensing of enrofloxacin. Analytica Chimica Acta, 2022, 1221, 340123.	2.6	4
5	An electrochemical sensing method based on CRISPR/Cas12a system and hairpin DNA probe for rapid and sensitive detection of Salmonella Typhimurium. Sensors and Actuators B: Chemical, 2022, 369, 132301.	4.0	15
6	Adsorptive and responsive hybrid sponge of melamine foam and metal organic frameworks for rapid collection/removal and detection of mycotoxins. Chemical Engineering Journal, 2021, 410, 128268.	6.6	40
7	Visual and quantitative detection of E. coli O157:H7 by coupling immunomagnetic separation and quantum dot-based paper strip. Analytical and Bioanalytical Chemistry, 2021, 413, 4417-4426.	1.9	8
8	A Low-Field Magnetic Resonance Imaging Aptasensor for the Rapid and Visual Sensing of <i>Pseudomonas aeruginosa</i> in Food, Juice, and Water. Analytical Chemistry, 2021, 93, 8631-8637.	3.2	15
9	Nanoconfinement Effect for Signal Amplification in Electrochemical Analysis and Sensing. Small, 2021, 17, e2101665.	5.2	25
10	Cooperation Mode of Outer Surface and Inner Space of Nanochannel: Separation-Detection System Based on Integrated Nanochannel Electrode for Rapid and Facile Detection of <i>Salmonella</i> . Analytical Chemistry, 2020, 92, 1818-1825.	3.2	24
11	One-pot facile integration of functional materials in bionanocomposite by mimicking blood coagulation for electrochemical biosensing. Chemical Engineering Journal, 2020, 385, 123462.	6.6	3
12	Electrochemical Conversion of Magnetic Nanoparticles Using Disposable Working Electrode in a 3Dâ€Printed Electrochemical Cell. Electroanalysis, 2020, 32, 1426-1432.	1.5	2
13	Integration and synergy in protein-nanomaterial hybrids for biosensing: Strategies and in-field detection applications. Biosensors and Bioelectronics, 2020, 154, 112036.	5.3	18
14	Advances in antimicrobial peptides-based biosensing methods for detection of foodborne pathogens: A review. Food Control, 2020, 112, 107116.	2.8	59
15	A Nanomaterial-Based Biosensor for the Quantitative Detection of Enrofloxacin Residues in Raw Chicken. Transactions of the ASABE, 2020, 63, 1869-1878.	1.1	6
16	Bio-inspired assembly of reduced graphene oxide by fibrin fiber to prepare multi-functional conductive bio-nanocomposites as versatile electrochemical platforms. Carbon, 2019, 153, 504-512.	5.4	16
17	A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Applied Materials & Interfaces, 2019, 11, 26250-26260.	4.0	109
18	A water-stable luminescent metal–organic framework for effective detection of aflatoxin B1 in walnut and almond beverages. RSC Advances, 2019, 9, 620-625.	1.7	39

Үімдсним Fu

#	Article	IF	CITATIONS
19	Recent advances in fabrication strategies and protein preservation application of protein-nanomaterial hybrids: Integration and synergy. TrAC - Trends in Analytical Chemistry, 2019, 118, 434-443.	5.8	12
20	Bio-/Nanoimmobilization Platform Based on Bioinspired Fibrin-Bone@Polydopamine-Shell Adhesive Composites for Biosensing. ACS Applied Materials & Interfaces, 2019, 11, 47311-47319.	4.0	7
21	Magnetic-core@dual-functional-shell nanocomposites with peroxidase mimicking properties for use in colorimetric and electrochemical sensing of hydrogen peroxide. Mikrochimica Acta, 2019, 186, 20.	2.5	13
22	Biomineralization-mimetic preparation of robust metal-organic frameworks biocomposites film with high enzyme load for electrochemical biosensing. Journal of Electroanalytical Chemistry, 2018, 823, 40-46.	1.9	31
23	Modeling Transfer of <i>Vibrio Parahaemolyticus</i> During Peeling of Raw Shrimp. Journal of Food Science, 2018, 83, 756-762.	1.5	5
24	Separation/Concentrationâ€signalâ€amplification inâ€One Method Based on Electrochemical Conversion of Magnetic Nanoparticles for Electrochemical Biosensing. Electroanalysis, 2018, 30, 517-524.	1.5	15
25	Enzyme Catalysis Induced Polymer Growth in Nanochannels: A New Approach to Regulate Ion Transport and to Study Enzyme Kinetics in Nanospace. Electroanalysis, 2018, 30, 328-335.	1.5	6
26	Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal–organic frameworks grown on silk nanofibers for hazard collection in water. Journal of Materials Chemistry A, 2018, 6, 3402-3413.	5.2	120
27	Regulating immobilization performance of metal-organic coordination polymers through pre-coordination for biosensing. Analytica Chimica Acta, 2018, 1005, 27-33.	2.6	10
28	A colorimetric biosensor based on enzyme-catalysis-induced production of inorganic nanoparticles for sensitive detection of glucose in white grape wine. RSC Advances, 2018, 8, 33960-33967.	1.7	15
29	Bioimmobilization Matrices with Ultrahigh Efficiency Based on Combined Polymerizations of Chemical Oxidation and Metal Organic Coordination for Biosensing. Journal of Physical Chemistry C, 2017, 121, 6229-6236.	1.5	4
30	Highly efficient enzyme immobilization by nanocomposites of metal organic coordination polymers and carbon nanotubes for electrochemical biosensing. Electrochemistry Communications, 2017, 79, 18-22.	2.3	21
31	An antimicrobial peptide-based colorimetric bioassay for rapid and sensitive detection of E. coli O157:H7. RSC Advances, 2017, 7, 15769-15775.	1.7	25
32	Exploiting pH-Regulated Dimer-Tetramer Transformation of Concanavalin A to Develop Colorimetric Biosensing of Bacteria. Scientific Reports, 2017, 7, 1452.	1.6	18
33	Study on the bioelectrochemistry of a horseradish peroxidase-gold nanoclusters bionanocomposite. Journal of Electroanalytical Chemistry, 2017, 792, 39-45.	1.9	12
34	Electrochemical Conversion of Fe ₃ O ₄ Magnetic Nanoparticles to Electroactive Prussian Blue Analogues for Self-Sacrificial Label Biosensing of Avian Influenza Virus H5N1. Analytical Chemistry, 2017, 89, 12145-12151.	3.2	77
35	Biosensing methods for the detection of highly pathogenic avian influenza H5N1 and H7N9 viruses. Analytical Methods, 2017, 9, 5238-5248.	1.3	10
36	Rapid and sensitive detection of E. coli O157:H7 based on antimicrobial peptide functionalized magnetic nanoparticles and urease-catalyzed signal amplification. Analytical Methods, 2017, 9, 5204-5210.	1.3	27

Үімдсним Fu

#	Article	IF	CITATIONS
37	Colorimetric Sensor Array for Thiols Discrimination Based on Urease–Metal Ion Pairs. Analytical Chemistry, 2016, 88, 8542-8547.	3.2	56
38	Facile and controllable synthesis of triplex Au@Ag–Pt@infinite coordination polymer core–shell nanoparticles for highly efficient immobilization of enzymes and enhanced electrochemical biosensing activity. RSC Advances, 2016, 6, 86025-86033.	1.7	11
39	Colorimetric detection of lipopolysaccharides based on a lipopolysaccharide-binding peptide and AuNPs. Analytical Methods, 2016, 8, 8079-8083.	1.3	21
40	A portable electrochemical immunosensor for rapid detection of trace aflatoxin B ₁ in rice. Analytical Methods, 2016, 8, 548-553.	1.3	39
41	A colorimetric detection of acrylamide in potato chips based on nucleophile-initiated thiol–ene Michael addition. Analyst, The, 2016, 141, 1136-1143.	1.7	24
42	Electrochemical Impedance Immunosensor Based on Self-Assembled Monolayers for Rapid Detection of Escherichia coli O157:H7 with Signal Amplification Using Lectin. Sensors, 2015, 15, 19212-19224.	2.1	81
43	Immobilization of Enzymes by Electrochemical and Chemical Oxidative Polymerization of L-DOPA to Fabricate Amperometric Biosensors and Biofuel Cells. ACS Applied Materials & Interfaces, 2015, 7, 10843-10852.	4.0	24
44	Ultrasensitive electrochemical immunoassay of proteins based on in situ duple amplification of gold nanoparticle biolabel signals. Chemical Communications, 2015, 51, 8540-8543.	2.2	42
45	Rapid methods for detecting acrylamide in thermally processed foods: A review. Food Control, 2015, 56, 135-146.	2.8	62
46	Filling Carbon Nanotubes with Prussian Blue Nanoparticles of High Peroxidaseâ€Like Catalytic Activity for Colorimetric Chemo―and Biosensing. Chemistry - A European Journal, 2014, 20, 2623-2630.	1.7	63
47	Bioâ€Inspired Preparation of Fibrinâ€Boned Bionanocomposites of Biomacromolecules and Nanomaterials for Biosensing. Advanced Functional Materials, 2014, 24, 5011-5018.	7.8	13
48	Detection of acrylamide in potato chips using a fluorescent sensing method based on acrylamide polymerization-induced distance increase between quantum dots. Biosensors and Bioelectronics, 2014, 54, 64-71.	5.3	53
49	Exploiting Enzyme Catalysis in Ultra-Low Ion Strength Media for Impedance Biosensing of Avian Influenza Virus Using a Bare Interdigitated Electrode. Analytical Chemistry, 2014, 86, 1965-1971.	3.2	82
50	Horseradish peroxidase-catalyzed synthesis of poly(thiophene-3-boronic acid) biocomposites for mono-/bi-enzyme immobilization and amperometric biosensing. Biosensors and Bioelectronics, 2013, 44, 41-47.	5.3	31
51	One-pot preparation of uricase–poly(thiophene-3-boronic acid)–Ptnano composites for high-performance amperometric biosensing of uric acid. Sensors and Actuators B: Chemical, 2013, 177, 116-123.	4.0	19
52	Thiol–ene chemistry guided preparation of thiolated polymeric nanocomposite for anodic stripping voltammetric analysis of Cd2+ and Pb2+. Analyst, The, 2013, 138, 1180.	1.7	18
53	Novel Amperometric Aptasensor Based on Analyte-Induced Suppression of Enzyme Catalysis in Polymeric Bionanocomposites. ACS Applied Materials & Interfaces, 2013, 5, 934-939.	4.0	20
54	Recent advances in electrochemical glucose biosensors: a review. RSC Advances, 2013, 3, 4473.	1.7	683

Үімдсним Fu

#	Article	IF	CITATIONS
55	Facile Synthesis of Prussian Blue-Filled Multiwalled Carbon Nanotubes Nanocomposites: Exploring Filling/Electrochemistry/Mass-Transfer in Nanochannels and Cooperative Biosensing Mode. Journal of Physical Chemistry C, 2012, 116, 20908-20917.	1.5	29
56	Preparation of thiolated polymeric nanocomposite for sensitive electroanalysis of dopamine. Biosensors and Bioelectronics, 2012, 36, 154-160.	5.3	23
57	Fabrication of a chitosan/glucose oxidase–poly(anilineboronic acid)–Aunano/Au-plated Au electrode for biosensor and biofuel cell. Biosensors and Bioelectronics, 2012, 31, 357-362.	5.3	33
58	Highly sensitive phenolic biosensor based on magnetic polydopamine-laccase-Fe3O4 bionanocomposite. Sensors and Actuators B: Chemical, 2012, 168, 46-53.	4.0	49
59	A post-labeling strategy based on dye-induced peeling of the aptamer off single-walled carbon nanotubes for electrochemical aptasensing. Chemical Communications, 2011, 47, 2637.	2.2	28
60	Exploiting Metal-Organic Coordination Polymers as Highly Efficient Immobilization Matrixes of Enzymes for Sensitive Electrochemical Biosensing. Analytical Chemistry, 2011, 83, 6511-6517.	3.2	71
61	Differential pulse anodic stripping voltammetric determination of Cd and Pb at a bismuth glassy carbon electrode modified with Nafion, poly(2,5-dimercapto-1,3,4-thiadiazole) and multiwalled carbon nanotubes. Mikrochimica Acta, 2011, 173, 95-102.	2.5	53
62	Electrodeposition of Threeâ€Dimensional Porous Platinum Film on Removable Polyaniline Template for Highâ€Performance Electroanalysis. Electroanalysis, 2011, 23, 1681-1690.	1.5	6
63	High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped. Biosensors and Bioelectronics, 2011, 26, 2311-2316.	5.3	36
64	One-pot electrodeposition of 3-aminopropyltriethoxysilane–chitosan hybrid gel film to immobilize glucose oxidase for biosensing. Sensors and Actuators B: Chemical, 2011, 157, 282-289.	4.0	29
65	Novel polymeric bionanocomposites with catalytic Pt nanoparticles label immobilized for high performance amperometric immunoassay. Biosensors and Bioelectronics, 2010, 25, 1699-1704.	5.3	36
66	High-performance glucose amperometric biosensor based on magnetic polymeric bionanocomposites. Biosensors and Bioelectronics, 2010, 25, 1277-1282.	5.3	40
67	Chemical/Biochemical Preparation of New Polymeric Bionanocomposites with Enzyme Labels Immobilized at High Load and Activity for High-Performance Electrochemical Immunoassay. Journal of Physical Chemistry C, 2010, 114, 1472-1480.	1.5	40
68	Preparation of Pt/multiwalled carbon nanotubes modified Au electrodes via Pt–Cu co-electrodeposition/Cu stripping protocol for high-performance electrocatalytic oxidation of methanol. Materials Chemistry and Physics, 2009, 118, 371-378.	2.0	12
69	Oneâ€Pot Preparation of Polymer–Enzyme–Metallic Nanoparticle Composite Films for Highâ€Performance Biosensing of Glucose and Galactose. Advanced Functional Materials, 2009, 19, 1784-1791.	7.8	139
70	Electropolymerization of preoxidized catecholamines on Prussian blue matrix to immobilize glucose oxidase for sensitive amperometric biosensing. Biosensors and Bioelectronics, 2009, 24, 2726-2729.	5.3	31
71	Highly Sensitive Glucose Biosensor Based on One-Pot Biochemical Preoxidation and Electropolymerization of 2,5-Dimercapto-1,3,4-thiadiazole in Glucose Oxidase-Containing Aqueous Suspension. Journal of Physical Chemistry B, 2009, 113, 1332-1340.	1.2	32
72	Immobilization of Enzymes through One-Pot Chemical Preoxidation and Electropolymerization of Dithiols in Enzyme-Containing Aqueous Suspensions To Develop Biosensors with Improved Performance. Analytical Chemistry, 2008, 80, 5829-5838.	3.2	48

#	Article	IF	CITATIONS
73	Electrodeposition of Carbon Nanotubesâ^'Chitosanâ^'Glucose Oxidase Biosensing Composite Films Triggered by Reduction of <i>p</i> -Benzoquinone or H ₂ O ₂ . Journal of Physical Chemistry B, 2007, 111, 11276-11284.	1.2	96
74	Electrosynthesized poly(1,6-hexanedithiol) as a new immobilization matrix for Au-nanoparticles-enhanced piezoelectric immunosensing. Journal of Electroanalytical Chemistry, 2007, 603, 96-106.	1.9	12