
Margarita E Evard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7444401/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simulation of Payload Vibration Protection by Shape Memory Alloy Parts. Journal of Materials Engineering and Performance, 2014, 23, 2719-2726.	2.5	11
2	Model of the Evolution of Deformation Defects and Irreversible Strain at Thermal Cycling of Stressed TiNi Alloy Specimen. MATEC Web of Conferences, 2015, 33, 03013.	0.2	8
3	An explanation of phase deformation tension–compression asymmetry of TiNi by means of microstructural modeling. Journal of Alloys and Compounds, 2013, 577, S127-S130.	5.5	7
4	Microstructural modelling of plastic deformation and defects accumulation in FeMn-based shape memory alloys. Procedia Structural Integrity, 2016, 2, 1546-1552.	0.8	7
5	Simulation of Vibration Isolation by Shape Memory Alloy Springs Using a Microstructural Model of Shape Memory Alloy. Materials Science Forum, 0, 738-739, 150-154.	0.3	6
6	An approach for modelling fracture of shape memory alloy parts. Smart Structures and Systems, 2006, 2, 357-363.	1.9	5
7	Computer simulation of the shape memory effects in Fe-Mn-type alloys accounting for the features of the FCC-HCP phase transformation. , 1998, , .		4
8	Modeling of Functional Properties of Porous Shape Memory Alloy. MATEC Web of Conferences, 2015, 33, 02006.	0.2	4
9	Modeling of strain accumulation and recovery due to fcc-hcp transformation at thermocycles. , 1999, 3687, 330.		3
10	Microstructural modeling of TiNi alloy high strain rate tension. Materials Today: Proceedings, 2017, 4, 4637-4641.	1.8	3
11	A beam model of porous shape memory alloy deformation. Materials Today: Proceedings, 2017, 4, 4631-4636.	1.8	3
12	About the choice of Gibbs' potential for modelling of FCC ↔ HCP transformation in FeMnSi-based shape memory alloys. AlP Conference Proceedings, 2018, , .	0.4	2
13	Microstructural modeling of fatigue fracture of shape memory alloys at thermomechanical cyclic loading. AIP Conference Proceedings, 2018, , .	0.4	2
14	Peculiarities of strain and resistivity variations in TiNi. Computational Materials Science, 2000, 19, 77-80.	3.0	1
15	Influence of stress on the temperature characteristics of martensitic transformation and on strain variation in Ti–Ni shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 462, 325-328.	5.6	1
16	Modeling of Deformation and Functional Properties of Shape Memory Alloys Based on a Microstructural Approach. Materials Science Foundations, 2015, 81-82, 20-37.	0.2	1
17	Simulation of Fatigue Fracture of FeMn-based Shape Memory Alloys at Cyclic Mechanical Tests. Procedia Structural Integrity, 2018, 13, 988-993.	0.8	1
18	Modeling of the Superelastic Behavior of CuAlNi - Single Crystals Accounting Anisotropy of Elastic Properties. Lecture Notes in Mechanical Engineering, 2020, , 93-100.	0.4	1

#	Article	IF	CITATIONS
19	Specific features of strain and resistance variations in Ti-Ni. , 2000, 4064, 342.		0
20	Martensitic transformation in TiNi alloy at loading. , 2001, 4348, 185.		0
21	Effect of Alternating-Sign Plastic Straining on the Shape Memory Effects in Nickel Titanium. Technical Physics Letters, 2005, 31, 578.	0.7	0
22	Model for self-accommodated groups of martensite. , 2005, , .		0
23	Modeling of vibrations isolation and arrest by shape memory parts and permanent magnets. AIP Conference Proceedings, 2018, , .	0.4	Ο
24	Simulation of fatigue fracture of TiNi shape memory alloy samples at cyclic loading in pseudoelastic state. AIP Conference Proceedings, 2018, , .	0.4	0
25	Experimental Study and Modeling of the Fatigue Fracture of High-Strength FeMnSi-based Shape Memory Alloy. Procedia Structural Integrity, 2020, 28, 2110-2117.	0.8	0
26	To the relation between the orientation of the pore channels and the mechanical properties of porous NiTi shape memory alloy. Letters on Materials, 2020, 10, 501-505.	0.7	0
27	Model for simulation of the mechanical behavior of a porous shape memory alloy with a non-ordered structure. Letters on Materials, 2020, 10, 377-380.	0.7	Ο