
Yong Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7443207/publications.pdf Version: 2024-02-01

YONG SHI

#	Article	IF	CITATIONS
1	Preparation and Characterization of Co-Modified Bimetallic MOF-74-NiCo as an Efficient Catalyst for Low Temperature CO-SCR. Integrated Ferroelectrics, 2022, 227, 221-230.	0.7	3
2	A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO. Chemical Engineering and Processing: Process Intensification, 2021, 159, 108232.	3.6	32
3	Facile design of highly effective Fe-modified bimetallic Fex–Ni1â~'x-MOFs catalysts with rodlike structures for low-temperature NO reduction by CO. Journal of Materials Science, 2021, 56, 9914-9928.	3.7	17
4	Insights into N-Coordinated Bimetallic Site Synergy during NO Selective Catalytic Reduction by CO. ACS Applied Materials & Interfaces, 2021, 13, 57182-57192.	8.0	15
5	Synthesis and characterization of bimetallic Cu-Al-BTC MOFs as an efficient catalyst for selective catalysis reduction of NO with CO. Ferroelectrics, 2020, 565, 58-65.	0.6	8
6	Preparation of metal-organic framework Cu ⁺ /Ni-MOF catalyst with enhanced catalytic activity for selective catalytic reduction of NOx. Ferroelectrics, 2020, 565, 26-34.	0.6	8
7	Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40†L microbial electrolysis cells. Water Research, 2019, 162, 358-368.	11.3	28
8	Synthesis of Bimetallic MOF-74-CoMn Catalyst and Its Application in Selective Catalytic Reduction of NO with CO. Acta Chimica Sinica, 2019, 77, 758.	1.4	12
9	2D, 3D mesostructured silicas templated mesoporous manganese dioxide for selective catalytic reduction of NOx with NH3. Journal of Colloid and Interface Science, 2018, 516, 254-262.	9.4	29
10	3D mesoporous CuFe2O4 as a catalyst for photo-Fenton removal of sulfonamide antibiotics at near neutral pH. Journal of Colloid and Interface Science, 2018, 524, 409-416.	9.4	70
11	Rational design of cobalt and nitrogen co-doped carbon hollow frameworks for efficient photocatalytic degradation of gaseous toluene. Journal of Colloid and Interface Science, 2018, 528, 45-52.	9.4	49
12	A new type Ni-MOF catalyst with high stability for selective catalytic reduction of NOx with NH3. Catalysis Communications, 2018, 114, 104-108.	3.3	53
13	Insight into the photocatalytic mineralization of short chain chlorinated paraffins boosted by polydopamine and Ag nanoparticles. Journal of Hazardous Materials, 2018, 359, 186-193.	12.4	15
14	MIL-100(Fe) as a new catalyst for selective catalysis reduction of NOx with ammonia. Integrated Ferroelectrics, 2017, 181, 14-25.	0.7	10
15	Investigation of a new phase in Cu-containing Fe-Ni alloy for corrosion resistance behavior. Integrated Ferroelectrics, 2016, 172, 59-65.	0.7	0
16	Synthesis of Bimetallic MOFs MIL-100(Fe-Mn) as an Efficient Catalyst for Selective Catalytic Reduction of NO x with NH3. Catalysis Letters, 2016, 146, 1956-1964.	2.6	68
17	Cu-BTC metal-organic framework as a novel catalyst for low temperature selective catalytic reduction (SCR) of NO by NH ₃ : Promotional effect of activation temperature. Integrated Ferroelectrics, 2016, 172, 169-179.	0.7	31
18	Facile synthesis and characterizations of copper–zinc-10,15,20-tetra(4-pyridyl) porphyrin (Cu–ZnTPyP) coordination polymer with hexagonal micro-lump and micro-prism morphologies. Journal of Colloid and Interface Science, 2014, 432, 229-235.	9.4	11

Yong Shi

#	Article	IF	CITATIONS
19	Effects of hydrothermal annealing on characteristics of CuInS2 thin films by SILAR method. Applied Surface Science, 2012, 258, 7465-7469.	6.1	16
20	Surface photovoltage properties and photocatalytic activities of nanocrystalline CoFe2O4 particles with porous superstructure fabricated by a modified chemical coprecipitation method. Journal of Nanoparticle Research, 2011, 13, 2147-2155.	1.9	36
21	Facile synthesis of ZnO/Zn2TiO4 core/shell nanowires for photocatalytic oxidation of acetone. Journal of Hazardous Materials, 2010, 184, 864-868.	12.4	38
22	Effect of [Cu]/[In] ratio on properties of CuInS2 thin films prepared by successive ionic layer absorption and reaction method. Applied Surface Science, 2006, 252, 3737-3743.	6.1	73
23	Influence of post-heat treatment on the properties of CuInS2 thin films deposited by an ion layer gas reaction (ILGAR). Journal of Crystal Growth, 2005, 282, 421-428.	1.5	21