
Tomasz Praczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7443036/publications.pdf Version: 2024-02-01

TOMASZ DDACZYK

#	Article	IF	CITATIONS
1	Neural anti-collision system for Autonomous Surface Vehicle. Neurocomputing, 2015, 149, 559-572.	3.5	55
2	Decision system for a team of autonomous underwater vehicles—Preliminary report. Neurocomputing, 2011, 74, 3323-3334.	3.5	19
3	A quick algorithm for horizon line detection in marine images. Journal of Marine Science and Technology, 2018, 23, 164-177.	1.3	16
4	Neural collision avoidance system for biomimetic autonomous underwater vehicle. Soft Computing, 2020, 24, 1315-1333.	2.1	15
5	Using evolutionary neural networks to predict spatial orientation of a ship. Neurocomputing, 2015, 166, 229-243.	3.5	14
6	Research on biomimetic underwater vehicles for underwater ISR. Proceedings of SPIE, 2016, , .	0.8	10
7	Evolving Co-Adapted Subcomponents in Assembler Encoding. International Journal of Applied Mathematics and Computer Science, 2007, 17, 549-563.	1.5	9
8	Using augmenting modular neural networks to evolve neuro-controllers for a team of underwater vehicles. Soft Computing, 2014, 18, 2445-2460.	2.1	7
9	Solving the pole balancing problem by means of assembler encoding. Journal of Intelligent and Fuzzy Systems, 2014, 26, 857-868.	0.8	6
10	Cooperative co–evolutionary neural networks. Journal of Intelligent and Fuzzy Systems, 2016, 30, 2843-2858.	0.8	6
11	Using Neuro–Evolutionary Techniques to Tune Odometric Navigational System of Small Biomimetic Autonomous Underwater Vehicle – Preliminary Report. Journal of Intelligent and Robotic Systems: Theory and Applications, 2020, 100, 363-376.	2.0	6
12	Using Genetic Algorithms for Optimizing Algorithmic Control System of Biomimetic Underwater Vehicle. Computational Methods in Science and Technology, 2015, 21, 251-260.	0.3	6
13	Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle. Polish Maritime Research, 2018, 25, 13-23.	0.6	6
14	Forming Neural Networks by Means of Assembler Encoding–Preliminary Report. Intelligent Automation and Soft Computing, 2011, 17, 319-331.	1.6	5
15	Software architecture of biomimetic underwater vehicle. Proceedings of SPIE, 2016, , .	0.8	5
16	Hill Climb Modular Assembler Encoding: Evolving Modular Neural Networks of fixed modular architecture. Knowledge-Based Systems, 2021, 232, 107493.	4.0	5
17	Modular Neural Networks in Assembler Encoding. Computational Methods in Science and Technology, 2008, 14, 27-38.	0.3	5
18	Hill-Climb-Assembler Encoding: Evolution of Small/Mid-Scale Artificial Neural Networks for Classification and Control Problems. Electronics (Switzerland), 2022, 11, 2104.	1.8	5

Tomasz Praczyk

#	Article	IF	CITATIONS
19	Detection of Land in Marine Images. International Journal of Computational Intelligence Systems, 2018, 12, 273.	1.6	4
20	Using neural-evolutionary-fuzzy algorithm for anti-collision system of Unmanned Surface Vehicle. , 2012, , .		3
21	Probalistic Neural Network Application to Warship Radio Station Identification. Computational Methods in Science and Technology, 2007, 13, 53-57.	0.3	3
22	Assembler Encoding with Evolvable Operations. Computational Methods in Science and Technology, 2015, 21, 123-139.	0.3	3
23	Application of Bearing and Distance Trees to the Identification of Landmarks on the Coast. International Journal of Applied Mathematics and Computer Science, 2007, 17, 87-97.	1.5	2
24	Ship trajectory anomaly detection. Intelligent Data Analysis, 2019, 23, 1021-1040.	0.4	2
25	Better Kohonen Neural Network in Radar Images Compression. Computational Methods in Science and Technology, 2006, 12, 157-164.	0.3	2
26	The Influence of Parameters of Biomimetic Underwater Vehicle Control System on the Ability of the Vehicle to Avoid Obstacles. Scientific Journal of Polish Naval Academy, 2016, 205, 75-91.	0.2	2
27	Report on Research with Biomimetic Autonomous Underwater Vehicle — Low Level Control. Zeszyty Naukowe Akademii Marynarki Wojennej, 2018, 212, 105-123.	0.2	2
28	Using genetic algorithms to fix a route for an Unmanned Surface Vehicle. , 2012, , .		1
29	Control-Oriented Model of Biomimetic Underwater Vehicle Motion. Solid State Phenomena, 0, 236, 121-127.	0.3	1
30	Application of Neural Networks and Radar Navigational Aids of Shore Area to Positioning. Computational Methods in Science and Technology, 2006, 12, 149-155.	0.3	1
31	Swarm Of Autonomous Underwater Vehicles – Preliminary Results Of The Control System. Pedagogika, 2021, 93, 141-148.	0.0	1
32	Assembler Encoding versus Connectivity Matrix Encoding in the Inverted Pendulum Problem with a Hidden State. Solid State Phenomena, 0, 164, 233-238.	0.3	0
33	The Influence of Fitness Function on Quality of Neuro-Controllers Produced with Assembler Encoding. Solid State Phenomena, 2011, 180, 89-100.	0.3	0
34	Prediction of the Spatial Orientation of a Ship by Means of Neural Networks. Solid State Phenomena, 2013, 210, 223-233.	0.3	0
35	High–Level Control System for Biomimetic Autonomous Under-water Vehicle. MATEC Web of Conferences, 2017, 125, 02017.	0.1	0