Steven Russell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7442330/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Drosophila nicotinic acetylcholine receptor subunits and their native interactions with insecticidal peptide toxins. ELife, 2022, 11, .	2.8	5
2	In Depth Exploration of the Alternative Proteome of Drosophila melanogaster. Frontiers in Cell and Developmental Biology, 2022, 10, .	1.8	6
3	The Evolution of Sox Gene Repertoires and Regulation of Segmentation in Arachnids. Molecular Biology and Evolution, 2021, 38, 3153-3169.	3.5	10
4	Characterisation of protein isoforms encoded by the Drosophila Glycogen Synthase Kinase 3 gene shaggy. PLoS ONE, 2020, 15, e0236679.	1.1	5
5	Title is missing!. , 2020, 15, e0236679.		0
6	Title is missing!. , 2020, 15, e0236679.		0
7	Title is missing!. , 2020, 15, e0236679.		0
8	Title is missing!. , 2020, 15, e0236679.		0
9	High-resolution transcriptional profiling of Anopheles gambiae spermatogenesis reveals mechanisms of sex chromosome regulation. Scientific Reports, 2019, 9, 14841.	1.6	26
10	Chromatin accessibility plays a key role in selective targeting of Hox proteins. Genome Biology, 2019, 20, 115.	3.8	36
11	Comparison of <i>Drosophila melanogaster</i> Embryo and Adult Proteome by SWATH-MS Reveals Differential Regulation of Protein Synthesis, Degradation Machinery, and Metabolism Modules. Journal of Proteome Research, 2019, 18, 2525-2534.	1.8	7
12	Dosage-Dependent Expression Variation Suppressed on the <i>Drosophila</i> Male <i>X</i> Chromosome. G3: Genes, Genomes, Genetics, 2018, 8, 587-598.	0.8	9
13	Duplication and expression of Sox genes in spiders. BMC Evolutionary Biology, 2018, 18, 205.	3.2	15
14	A SoxB gene acts as an anterior gap gene and regulates posterior segment addition in a spider. ELife, 2018, 7, .	2.8	26
15	Spectral Libraries for SWATHâ€MS Assays for <i>Drosophila melanogaster</i> and <i>Solanum lycopersicum</i> . Proteomics, 2017, 17, 1700216.	1.3	21
16	Engineering the Drosophila Genome for Developmental Biology. Journal of Developmental Biology, 2017, 5, 16.	0.9	19
17	Regions of very low H3K27me3 partition the Drosophila genome into topological domains. PLoS ONE, 2017, 12, e0172725.	1.1	32
18	Role of co-repressor genomic landscapes in shaping the Notch response. PLoS Genetics, 2017, 13, e1007096.	1.5	15

#	Article	IF	CITATIONS
19	The evolutionally-conserved function of group B1 Sox family members confers the unique role of Sox2 in mouse ES cells. BMC Evolutionary Biology, 2016, 16, 173.	3.2	33
20	SWATH-MS dataset of heat-shock treated Drosophila melanogaster embryos. Data in Brief, 2016, 9, 991-995.	0.5	3
21	SWATH-MS data of Drosophila melanogaster proteome dynamics during embryogenesis. Data in Brief, 2016, 9, 771-775.	0.5	7
22	Analysis of <i>Drosophila melanogaster</i> proteome dynamics during embryonic development by a combination of labelâ€free proteomics approaches. Proteomics, 2016, 16, 2068-2080.	1.3	24
23	Roles of cofactors and chromatin accessibility in Hox protein target specificity. Epigenetics and Chromatin, 2016, 9, 1.	1.8	68
24	A CRISPR-Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nature Biotechnology, 2016, 34, 78-83.	9.4	985
25	Effects of Gene Dose, Chromatin, and Network Topology on Expression in Drosophila melanogaster. PLoS Genetics, 2016, 12, e1006295.	1.5	38
26	A Variably Occupied CTCF Binding Site in the <i>Ultrabithorax</i> Gene in the <i>Drosophila</i> Bithorax Complex. Molecular and Cellular Biology, 2015, 35, 318-330.	1.1	22
27	Safeguarding gene drive experiments in the laboratory. Science, 2015, 349, 927-929.	6.0	254
28	Chromatin signatures at Notchâ€regulated enhancers reveal largeâ€scale changes in H3K56ac upon activation. EMBO Journal, 2015, 34, 1889-1904.	3.5	76
29	Common binding by redundant group B Sox proteins is evolutionarily conserved in Drosophila. BMC Genomics, 2015, 16, 292.	1.2	14
30	Comparative Genomics of Transcription Factor Binding in Drosophila. True Bugs (Heteroptera) of the Neotropics, 2015, , 157-175.	1.2	0
31	Characterisation ofDrosophila UbxCPTI000601andhthCPTI000378Protein Trap Lines. Scientific World Journal, The, 2014, 2014, 1-14.	0.8	3
32	Development of synthetic selfish elements based on modular nucleases in Drosophila melanogaster. Nucleic Acids Research, 2014, 42, 7461-7472.	6.5	64
33	Analysis of the expression patterns, subcellular localisations and interaction partners of <i>Drosophila</i> proteins using a <i>pigP</i> protein trap library. Development (Cambridge), 2014, 141, 3994-4005.	1.2	160
34	SoxNeuro orchestrates central nervous system specification and differentiation in Drosophila and is only partially redundant with Dichaete. Genome Biology, 2014, 15, R74.	13.9	33
35	Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System. Current Biology, 2014, 24, 229-241.	1.8	95
36	The role of Dichaete in transcriptional regulation during Drosophila embryonic development. BMC Genomics, 2013, 14, 861.	1.2	31

#	Article	IF	CITATIONS
37	Identifying targets of the Sox domain protein Dichaete in the Drosophila CNS via targeted expression of dominant negative proteins. BMC Developmental Biology, 2013, 13, 1.	2.1	28
38	Transcriptional Dynamics Elicited by a Short Pulse of Notch Activation Involves Feed-Forward Regulation by E(spl)/Hes Genes. PLoS Genetics, 2013, 9, e1003162.	1.5	62
39	Bayesian clustering of replicated time-course gene expression data with weak signals. Annals of Applied Statistics, 2013, 7, .	0.5	4
40	Optimising Homing Endonuclease Gene Drive Performance in a Semi-Refractory Species: The Drosophila melanogaster Experience. PLoS ONE, 2013, 8, e54130.	1.1	52
41	The Design and In Vivo Evaluation of Engineered I-Onul-Based Enzymes for HEG Gene Drive. PLoS ONE, 2013, 8, e74254.	1.1	40
42	From sequence to function: the impact of the genome sequence on Drosophila biology. Briefings in Functional Genomics, 2012, 11, 333-335.	1.3	1
43	Toward a complete Drosophiladeficiency kit. Genome Biology, 2012, 13, 149.	3.8	16
44	Conserved properties of <i>Drosophila</i> and human spermatozoal mRNA repertoires. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2636-2644.	1.2	54
45	Disruption of Microtubule Integrity Initiates Mitosis during CNS Repair. Developmental Cell, 2012, 23, 433-440.	3.1	18
46	Toward a complete Drosophila deficiency kit. Genome Biology, 2012, 13, 149.	13.9	9
47	Genome Mapping and Genomics in Drosophila. , 2012, , 31-86.		1
48	'MiMICing' genomic flexibility. Nature Methods, 2011, 8, 728-729.	9.0	0
48 49	'MiMlCing' genomic flexibility. Nature Methods, 2011, 8, 728-729. Genomic Approaches to Understanding Hox Gene Function. Advances in Genetics, 2011, 76, 55-91.	9.0 0.8	0 22
48 49 50	 'MiMlCing' genomic flexibility. Nature Methods, 2011, 8, 728-729. Genomic Approaches to Understanding Hox Gene Function. Advances in Genetics, 2011, 76, 55-91. Genome-Wide Analysis of the Binding of the Hox Protein Ultrabithorax and the Hox Cofactor Homothorax in Drosophila. PLoS ONE, 2011, 6, e14778. 	9.0 0.8 1.1	0 22 57
48 49 50 51	 'MiMlCing' genomic flexibility. Nature Methods, 2011, 8, 728-729. Genomic Approaches to Understanding Hox Gene Function. Advances in Genetics, 2011, 76, 55-91. Genome-Wide Analysis of the Binding of the Hox Protein Ultrabithorax and the Hox Cofactor Homothorax in Drosophila. PLoS ONE, 2011, 6, e14778. A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531. 	9.0 0.8 1.1 13.7	0 22 57 477
48 49 50 51 52	'MiMlCing' genomic flexibility. Nature Methods, 2011, 8, 728-729. Genomic Approaches to Understanding Hox Gene Function. Advances in Genetics, 2011, 76, 55-91. Genome-Wide Analysis of the Binding of the Hox Protein Ultrabithorax and the Hox Cofactor Homothorax in Drosophila. PLoS ONE, 2011, 6, e14778. A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531. The impact of quantitative optimization of hybridization conditions on gene expression analysis. BMC Bioinformatics, 2011, 12, 73.	9.0 0.8 1.1 13.7 1.2	0 22 57 477 12
48 49 50 51 52 53	'MiMICing' genomic flexibility. Nature Methods, 2011, 8, 728-729. Cenomic Approaches to Understanding Hox Gene Function. Advances in Genetics, 2011, 76, 55-91. Genome-Wide Analysis of the Binding of the Hox Protein Ultrabithorax and the Hox Cofactor Homothorax in Drosophila. PLoS ONE, 2011, 6, e14778. A cis-regulatory map of the Drosophila genome. Nature, 2011, 471, 527-531. The impact of quantitative optimization of hybridization conditions on gene expression analysis. BMC Bioinformatics, 2011, 12, 73. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genomics, 2011, 12, 296.	9.0 0.8 1.1 13.7 1.2 1.2	0 22 57 477 12 169

#	Article	IF	CITATIONS
55	Role of Testis-Specific Gene Expression in Sex-Chromosome Evolution of <i>Anopheles gambiae</i> . Genetics, 2011, 189, 1117-1120.	1.2	29
56	Insect Population Control by Homing Endonuclease-Based Gene Drive: An Evaluation in <i>Drosophila melanogaster</i> . Genetics, 2011, 188, 33-44.	1.2	67
57	Polysaccharide microarrays for high-throughput screening of transglycosylase activities in plant extracts. Glycoconjugate Journal, 2010, 27, 79-87.	1.4	37
58	On the use of resampling tests for evaluating statistical significance of binding-site co-occurrence. BMC Bioinformatics, 2010, 11, 359.	1.2	13
59	A Comprehensive Map of Insulator Elements for the Drosophila Genome. PLoS Genetics, 2010, 6, e1000814.	1.5	305
60	Neighbourhood Continuity Is Not Required for Correct Testis Gene Expression in Drosophila. PLoS Biology, 2010, 8, e1000552.	2.6	28
61	Identification of Functional Elements and Regulatory Circuits by <i>Drosophila</i> modENCODE. Science, 2010, 330, 1787-1797.	6.0	1,124
62	No backbone but lots of Sox: Invertebrate Sox genes. International Journal of Biochemistry and Cell Biology, 2010, 42, 453-464.	1.2	79
63	Replacement of mouse Sox10 by the Drosophila ortholog Sox100B provides evidence for co-option of SoxE proteins into vertebrate-specific gene-regulatory networks through altered expression. Developmental Biology, 2010, 341, 267-281.	0.9	19
64	<i>Sox100B</i> , a <i>Drosophila</i> Group E Sox-domain Gene, Is Required for Somatic Testis Differentiation. Sexual Development, 2009, 3, 26-37.	1.1	55
65	The Flannotator—a gene and protein expression annotation tool for <i>Drosophila melanogaster</i> . Bioinformatics, 2009, 25, 548-549.	1.8	19
66	Gene expression during Drosophila melanogaster egg development before and after reproductive diapause. BMC Genomics, 2009, 10, 242.	1.2	93
67	Biases in Drosophila melanogaster protein trap screens. BMC Genomics, 2009, 10, 249.	1.2	16
68	ChIPing away at the genome: the new frontier travel guide. Molecular BioSystems, 2009, 5, 1421.	2.9	16
69	SNPing and chipping away at the fly genome. Nature Methods, 2008, 5, 295-296.	9.0	Ο
70	Stability and Dynamics of Polycomb Target Sites in Drosophila Development. PLoS Genetics, 2008, 4, e1000178.	1.5	88
71	Prediction of Gene Expression in Embryonic Structures of Drosophila melanogaster. PLoS Computational Biology, 2007, 3, e144.	1.5	13
72	CTCF Genomic Binding Sites in Drosophila and the Organisation of the Bithorax Complex. PLoS Genetics, 2007, 3, e112.	1.5	162

#	Article	IF	CITATIONS
73	The DrosDel Deletion Collection: A Drosophila Genomewide Chromosomal Deficiency Resource. Genetics, 2007, 177, 615-629.	1.2	197
74	Genomic mapping of Suppressor of Hairy-wing binding sites in Drosophila. Genome Biology, 2007, 8, R167.	13.9	56
75	FlyMine: an integrated database for Drosophila and Anopheles genomics. Genome Biology, 2007, 8, R129.	13.9	345
76	Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster. BMC Genomics, 2007, 8, 454.	1.2	27
77	Learning to fly—getting the best out of microarrays. Molecular BioSystems, 2006, 2, 402-405.	2.9	0
78	SimArray: a user-friendly and user-configurable microarray design tool. BMC Bioinformatics, 2006, 7, 102.	1.2	3
79	Basic recipes for the molecular biologist. Development (Cambridge), 2006, 133, 4803-4804.	1.2	0
80	MAMMOTa set of tools for the design, management and visualization of genomic tiling arrays. Bioinformatics, 2006, 22, 883-884.	1.8	10
81	[4] Microarray Oligonucleotide Probes. Methods in Enzymology, 2006, 410, 73-98.	0.4	66
82	Spotted-dick, a zinc-finger protein of Drosophila required for expression of Orc4 and S phase. EMBO Journal, 2005, 24, 4304-4315.	3.5	19
83	Robotic spotting of cDNA and oligonucleotide microarrays. Trends in Biotechnology, 2005, 23, 374-379.	4.9	76
84	Proposed methods for testing and selecting the ERCC external RNA controls. BMC Genomics, 2005, 6, 150.	1.2	130
85	Conserved genomic organisation of Group B Sox genes in insects. BMC Genetics, 2005, 6, 26.	2.7	51
86	TheDrosophilagenome(s). , 2005, , .		0
87	Genomic analysis of heat-shock factor targets in Drosophila. Genome Biology, 2005, 6, R63.	13.9	76
88	The DrosDel Collection. Genetics, 2004, 167, 797-813.	1.2	342
89	Temporally dynamic response to Wingless directs the sequential elaboration of the proximodistal axis of the Drosophila wing. Developmental Biology, 2003, 254, 277-288.	0.9	39
90	Sex-Specific Apoptosis Regulates Sexual Dimorphism in the Drosophila Embryonic Gonad. Developmental Cell, 2003, 5, 205-216.	3.1	95

#	Article	IF	CITATIONS
91	Transposable elements as tools for genomics and genetics in Drosophila. Briefings in Functional Genomics & Proteomics, 2003, 2, 57-71.	3.8	99
92	Microarray Gene Expression Data Analysis: A Beginners Guide. H. C. CAUSTON, J. QUACKENBUSH and A. BRAZMA. Blackwell Publishing. 2003. 160 pages. ISBN 1405106824. Price £34.99 (paperback) Genetical Research, 2003, 82, 151-152.	0.3	1
93	Drosophila melanogaster as a model system for drug discovery and pathway screening. Current Opinion in Pharmacology, 2002, 2, 555-560.	1.7	63
94	Evidence for differential and redundant function of the Sox genes <i>Dichaete</i> and <i>SoxN</i> during CNS development in <i>Drosophila</i> . Development (Cambridge), 2002, 129, 4219-4228.	1.2	120
95	Evidence for differential and redundant function of the Sox genes Dichaete and SoxN during CNS development in Drosophila. Development (Cambridge), 2002, 129, 4219-28.	1.2	54
96	The Drosophila dominant wing mutation Dichaete results from ectopic expression of a Sox-domain gene. Molecular Genetics and Genomics, 2000, 263, 690-701.	2.4	10
97	Regulatory Mutations of the Drosophila Sox Gene Dichaete Reveal New Functions in Embryonic Brain and Hindgut Development. Developmental Biology, 2000, 220, 307-321.	0.9	43
98	A Drosophila group E Sox gene is dynamically expressed in the embryonic alimentary canal. Mechanisms of Development, 2000, 93, 185-188.	1.7	29
99	The 82F Late Puff Contains the L82 Gene, an Essential Member of a Novel Gene Family. Developmental Biology, 1999, 213, 116-130.	0.9	31
100	Ecdysone-Regulated Chromosome Puffing in Drosophila melanogaster. , 1996, , 109-144.		16
101	A Drosophila melanogaster chromosome 2L repeat is expressed in the male germ line. Chromosoma,	1.0	9