List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7442222/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Current Advances in Characterization of Nano-porous Materials: Pore Size Distribution and Surface Area. Engineering Materials, 2021, , 315-340.	0.3	10
2	Can we define a unique microscopic pressure in inhomogeneous fluids?. Journal of Chemical Physics, 2021, 154, 084502.	1.2	12
3	Gerhard Findenegg (1938–2019). Molecular Physics, 2021, 119, .	0.8	0
4	Enhancing Gas Solubility in Nanopores: A Combined Study Using Classical Density Functional Theory and Machine Learning. Langmuir, 2020, 36, 8527-8536.	1.6	20
5	The Young–Laplace equation for a solid–liquid interface. Journal of Chemical Physics, 2020, 153, 191102.	1.2	35
6	Microscopic Pressure Tensor in Cylindrical Geometry: Pressure of Water in a Carbon Nanotube. Journal of Chemical Theory and Computation, 2020, 16, 5548-5561.	2.3	14
7	Conformal Sites Theory for Adsorbed Films on Energetically Heterogeneous Surfaces. Langmuir, 2020, 36, 1822-1838.	1.6	7
8	Reply to the â€~Comment on "Pressure enhancement in carbon nanopores: a major confinement effectâ€â€™ by D. van Dijk, <i>Phys. Chem. Chem. Phys.</i> , 2020, 22 , DOI: 10.1039/C9CP02890K. Physical Chemistry Chemical Physics, 2020, 22, 9826-9830.	1.3	9
9	Structure of ice confined in carbon and silica nanopores. Bulletin of Materials Science, 2019, 42, 1.	0.8	4
10	Bottom-Up Approach to the Coarse-Grained Surface Model: Effective Solid–Fluid Potentials for Adsorption on Heterogeneous Surfaces. Langmuir, 2019, 35, 5975-5986.	1.6	17
11	The Nitric Oxide Dimer Reaction in Carbon Nanopores. Journal of Physical Chemistry B, 2018, 122, 3604-3614.	1.2	17
12	Effect of Confinement on Melting in Nanopores. , 2018, , .		1
13	The pressure in interfaces having cylindrical geometry. Journal of Chemical Physics, 2018, 149, 084109.	1.2	9
14	Surface-Driven High-Pressure Processing. Engineering, 2018, 4, 311-320.	3.2	11
15	High-density equation of state for a two-dimensional Lennard-Jones solid. Journal of Chemical Physics, 2018, 148, 174505.	1.2	9
16	Computer simulation of conductive linear sulfur chains confined in carbon nanotubes. Molecular Simulation, 2017, 43, 519-525.	0.9	14
17	Molecular Modeling and Adsorption Properties of Ordered Silica-Templated CMK Mesoporous Carbons. Langmuir, 2017, 33, 2109-2121.	1.6	15
18	Adhesion and friction in polymer films on solid substrates: conformal sites analysis and corresponding surface measurements. Soft Matter, 2017, 13, 3492-3505.	1.2	16

#	Article	IF	CITATIONS
19	Pressure Enhancement in Confined Fluids: Effect of Molecular Shape and Fluid–Wall Interactions. Langmuir, 2017, 33, 11231-11245.	1.6	30
20	Computationally Mapping p <i>K</i> _a Shifts Due to the Presence of a Polyelectrolyte Chain around Whey Proteins. Langmuir, 2017, 33, 11417-11428.	1.6	32
21	Effect of confinement in nano-porous materials on the solubility of a supercritical gas. Molecular Physics, 2016, 114, 3294-3306.	0.8	29
22	Structure of Ice in Confinement: Water in Mesoporous Carbons. Journal of Chemical & Engineering Data, 2016, 61, 4252-4260.	1.0	24
23	Liquid–Solid Nanofriction and Interfacial Wetting. Langmuir, 2016, 32, 743-750.	1.6	31
24	Perturbation theories of the thermodynamics of polar and associating liquids: A historical perspective. Fluid Phase Equilibria, 2016, 416, 3-17.	1.4	41
25	Melting of Eutectic Mixtures in Silica and Carbon Nanopores. Journal of Chemical & Engineering Data, 2015, 60, 3093-3100.	1.0	2
26	Water on Titanium Dioxide Surface: A Revisiting by Reactive Molecular Dynamics Simulations. Langmuir, 2014, 30, 14832-14840.	1.6	64
27	Thermodynamics of confined nano-phases. Journal of Chemical Thermodynamics, 2014, 74, 169-183.	1.0	107
28	The theory of non-electrolyte solutions: an historical review. Molecular Physics, 2013, 111, 3666-3697.	0.8	22
29	High pressure effect in nanoporous carbon materials: Effects of pore geometry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 437, 33-41.	2.3	46
30	Controllable atomistic graphene oxide model and its application in hydrogen sulfide removal. Journal of Chemical Physics, 2013, 139, 194707.	1.2	23
31	Reactive adsorption of ammonia and ammonia/water on CuBTC metal-organic framework: A ReaxFF molecular dynamics simulation. Journal of Chemical Physics, 2013, 138, 034102.	1.2	38
32	On the molecular origin of high-pressure effects in nanoconfinement: The role of surface chemistry and roughness. Journal of Chemical Physics, 2013, 139, 144701.	1.2	57
33	Dynamics of nanoconfined water under pressure. Physical Review E, 2013, 88, 022316.	0.8	7
34	Activation of water on the TiO2 (110) surface: The case of Ti adatoms. Journal of Chemical Physics, 2012, 136, 064703.	1.2	12
35	Analysis of the solvation structure of rubidium bromide under nanoconfinement. Molecular Simulation, 2012, 38, 1209-1220.	0.9	3
36	Molecular behavior of water in TiO2 nano-slits with varying coverages of carbon: a molecular dynamics simulation study. Physical Chemistry Chemical Physics, 2012, 14, 16536.	1.3	34

#	Article	IF	CITATIONS
37	Structural analysis of water and carbon tetrachloride adsorbed in activated carbon fibres. Physical Chemistry Chemical Physics, 2012, 14, 7145.	1.3	32
38	ReaxFF molecular dynamics simulation of thermal stability of a Cu3(BTC)2 metal–organic framework. Physical Chemistry Chemical Physics, 2012, 14, 11327.	1.3	48
39	Under pressure: Quasi-high pressure effects in nanopores. Microporous and Mesoporous Materials, 2012, 154, 19-23.	2.2	49
40	Atomistic models for disordered nanoporous carbons using reactive force fields. Microporous and Mesoporous Materials, 2012, 154, 24-37.	2.2	76
41	Novel ice structures in carbon nanopores: pressure enhancement effect of confinement. Physical Chemistry Chemical Physics, 2011, 13, 9008.	1.3	26
42	Adsorptive behavior of CO2, CH4 and their mixtures in carbon nanospace: a molecular simulation study. Physical Chemistry Chemical Physics, 2011, 13, 3985.	1.3	66
43	Simulating Local Adsorption Isotherms in Structurally Complex Porous Materials: A Direct Assessment of the Slit Pore Model. Journal of Physical Chemistry Letters, 2011, 2, 165-169.	2.1	30
44	Pressure enhancement in carbon nanopores: a major confinement effect. Physical Chemistry Chemical Physics, 2011, 13, 17163-17170.	1.3	124
45	Toward Understanding Reactive Adsorption of Ammonia on Cu-MOF/Graphite Oxide Nanocomposites. Langmuir, 2011, 27, 13043-13051.	1.6	137
46	Adsorption, structure and dynamics of benzene in ordered and disordered porous carbons. Physical Chemistry Chemical Physics, 2011, 13, 3748-3757.	1.3	55
47	The role of molecular modeling in confined systems: impact and prospects. Physical Chemistry Chemical Physics, 2011, 13, 58-85.	1.3	153
48	Adsorption and diffusion of argon in disordered nanoporous carbons. Adsorption, 2011, 17, 189-199.	1.4	25
49	Adsorption and diffusion of argon confined in ordered and disordered microporous carbons. Applied Surface Science, 2010, 256, 5131-5136.	3.1	47
50	Ti-decorated C60 as catalyst for hydrogen generation and storage. Applied Physics Letters, 2010, 96, .	1.5	18
51	Freezing of mixtures confined in silica nanopores: Experiment and molecular simulation. Journal of Chemical Physics, 2010, 133, 084701.	1.2	28
52	Transition from single-file to Fickian diffusion for binary mixtures in single-walled carbon nanotubes. Journal of Chemical Physics, 2010, 133, 094501.	1.2	35
53	Dissociation of water over Ti-decorated C60. Journal of Chemical Physics, 2010, 133, 084510.	1.2	13
54	Molecular Modeling of Matter: Impact and Prospects in Engineering. Industrial & Engineering Chemistry Research, 2010, 49, 3026-3046.	1.8	98

#	Article	IF	CITATIONS
55	Melting Behavior of Bromobenzene within Carbon Nanotubesâ€. Journal of Chemical & Engineering Data, 2010, 55, 4183-4189.	1.0	15
56	Dual diffusion mechanism of argon confined in single-walled carbon nanotube bundles. Physical Chemistry Chemical Physics, 2010, 12, 6632.	1.3	25
57	Melting of mixtures in silica nanopores. Pure and Applied Chemistry, 2009, 81, 1953-1959.	0.9	25
58	Modeling Micelle-Templated Mesoporous Material SBA-15: Atomistic Model and Gas Adsorption Studies. Langmuir, 2009, 25, 5802-5813.	1.6	44
59	Adsorption and Structure of Benzene on Silica Surfaces and in Nanopores. Langmuir, 2009, 25, 10648-10659.	1.6	69
60	Energetics investigation on encapsulation of protein/peptide drugs in carbon nanotubes. Journal of Chemical Physics, 2009, 131, 015101.	1.2	35
61	Hydrogen storage enhanced in Li-doped carbon replica of zeolites: A possible route to achieve fuel cell demand. Journal of Chemical Physics, 2009, 130, 174717.	1.2	31
62	Molecular design of photoactive acenes for organic photovoltaics. Journal of Chemical Physics, 2009, 130, 194701.	1.2	19
63	Effect of Pressure on the Freezing of Pure Fluids and Mixtures Confined in Nanopores. Journal of Physical Chemistry B, 2009, 113, 13874-13881.	1.2	52
64	Isomerization kinetics of small hydrocarbons in confinement. Adsorption, 2008, 14, 181-188.	1.4	5
65	Molecular-level simulations of chemical reaction equilibrium for nitric oxide dimerization reaction in disordered nanoporous carbons. Fluid Phase Equilibria, 2008, 272, 18-31.	1.4	14
66	Simulation of chemical reaction equilibria by the reaction ensemble Monte Carlo method: a reviewâ€. Molecular Simulation, 2008, 34, 119-146.	0.9	102
67	Diffusion dynamics of water controlled by topology of potential energy surface inside carbon nanotubes. Physical Review B, 2008, 77, .	1.1	59
68	Models of Porous Carbons. , 2008, , 103-132.		3
69	Molecular simulation study of temperature effect on ionic hydration in carbon nanotubes. Physical Chemistry Chemical Physics, 2008, 10, 1896.	1.3	76
70	Catalytic role of carbons in methane decomposition for CO- and CO2-free hydrogen generation. Journal of Chemical Physics, 2008, 128, 214702.	1.2	34
71	Melting behavior of water in cylindrical pores: carbon nanotubes and silica glasses. Physical Chemistry Chemical Physics, 2008, 10, 4909.	1.3	52
72	A remarkable shape-catalytic effect of confinement on the rotational isomerization of small hydrocarbons. Journal of Chemical Physics, 2008, 128, 034704.	1.2	25

#	Article	IF	CITATIONS
73	A Monte Carlo study of capillary condensation of krypton within realistic models of templated mesoporous silica materials. Studies in Surface Science and Catalysis, 2007, , 153-160.	1.5	8
74	Coarse Graining of Nonbonded Degrees of Freedom. Physical Review Letters, 2007, 98, 267801.	2.9	24
75	Freezing of argon in ordered and disordered porous carbon. Physical Review B, 2007, 76, .	1.1	46
76	Confinement effects on freezing of binary mixtures. Studies in Surface Science and Catalysis, 2007, 160, 667-674.	1.5	0
77	Modeling Triblock Surfactant Templated Mesoporous Silicas (MCF and SBA-15): A Mimetic Simulation Study. Studies in Surface Science and Catalysis, 2007, , 527-534.	1.5	4
78	Crossover from Normal to Inverse Temperature Dependence in the Adsorption of Nonionic Surfactants at Hydrophilic Surfaces and Pore Wallsâ€. Journal of Physical Chemistry C, 2007, 111, 16045-16054.	1.5	24
79	Molecular Dynamics Study on Diameter Effect in Structure of Ethanol Molecules Confined in Single-Walled Carbon Nanotubesâ€. Journal of Physical Chemistry C, 2007, 111, 15677-15685.	1.5	48
80	Anisotropic Self-Diffusion in Nanofluidic Structures. Journal of Physical Chemistry C, 2007, 111, 15493-15504.	1.5	13
81	Ring Connectivity:Â Measuring Network Connectivity in Network Covalent Solids. Langmuir, 2007, 23, 1123-1130.	1.6	8
82	Adsorption and dynamics of argon in porous carbons. European Physical Journal: Special Topics, 2007, 141, 121-125.	1.2	6
83	Argon and krypton adsorption on templated mesoporous silicas: molecular simulation and experiment. Adsorption, 2007, 13, 425-437.	1.4	28
84	Molecular simulation of the adsorption and structure of benzene confined in mesoporous silicas. Adsorption, 2007, 13, 485-490.	1.4	24
85	Confinement effects on chemical reactions—Toward an integrated rational catalyst design. Applied Surface Science, 2007, 253, 5570-5579.	3.1	40
86	STRUCTURAL MODELING OF POROUS CARBONS USING A HYBRID REVERSE MONTE CARLO METHOD. , 2007, , .		1
87	Molecular Modeling of Porous Carbons Using the Hybrid Reverse Monte Carlo Method. Langmuir, 2006, 22, 9942-9948.	1.6	161
88	Fast Method for Computing Pore Size Distributions of Model Materials. Langmuir, 2006, 22, 7726-7731.	1.6	242
89	Hybrid Reverse Monte Carlo Reconstruction and Simulation Studies. , 2006, , .		0
90	Adsorption of Simple Gases in MCM-41 Materials:Â The Role of Surface Roughness. Langmuir, 2006, 22, 194-202.	1.6	129

#	Article	IF	CITATIONS
91	Simulated water adsorption in chemically heterogeneous carbon nanotubes. Journal of Chemical Physics, 2006, 124, 074710.	1.2	76
92	Adsorption, structure and dynamics of fluids in ordered and disordered models of porous carbons. Molecular Physics, 2006, 104, 3491-3499.	0.8	37
93	Structure of saccharose-based carbon and transport of confined fluids: hybrid reverse Monte Carlo reconstruction and simulation studies. Molecular Simulation, 2006, 32, 567-577.	0.9	47
94	GCMC simulations of dynamic structural change of Cu–organic crystals with N2adsorption. Journal of Experimental Nanoscience, 2006, 1, 91-95.	1.3	9
95	Molecular modeling and adsorption properties of porous carbons. Carbon, 2006, 44, 2445-2451.	5.4	46
96	Effects of confinement on freezing and melting. Journal of Physics Condensed Matter, 2006, 18, R15-R68.	0.7	614
97	Effect of confinement by porous carbons on the unimolecular decomposition of formaldehyde. Journal of Chemical Physics, 2006, 125, 084711.	1.2	17
98	Mesoscale modeling of complex binary fluid mixtures: Towards an atomistic foundation of effective potentials. Journal of Chemical Physics, 2006, 124, 074105.	1.2	40
99	Freezing of Fluids Confined in a Disordered Nanoporous Structure. Physical Review Letters, 2006, 97, 105702.	2.9	32
100	Adsorption and structure of argon in activated porous carbons. Molecular Simulation, 2006, 32, 557-566.	0.9	16
101	Adsorption and catalysis: The effect of confinement on chemical reactions. Applied Surface Science, 2005, 252, 766-777.	3.1	85
102	Temperature Effect on Adsorption/Desorption Isotherms for a Simple Fluid Confined within Various Nanopores. Adsorption, 2005, 11, 289-294.	1.4	59
103	The Effect of Pore Connectivity on Water Adsorption Isotherms in Non-Activated Graphitic Nanopores. Adsorption, 2005, 11, 337-341.	1.4	17
104	Effect of Confinement on Chemical Reactions. Adsorption, 2005, 11, 349-354.	1.4	28
105	Effects of Activation on the Structure and Adsorption Properties of a Nanoporous Carbon Using Molecular Simulation. Adsorption, 2005, 11, 355-360.	1.4	52
106	Effect of Confinement on Freezing of CCl4 in Cylindrical Pores. Adsorption, 2005, 11, 391-396.	1.4	17
107	Simulated Water Adsorption Isotherms in Hydrophilic and Hydrophobic Cylindrical Nanopores. Adsorption, 2005, 11, 397-401.	1.4	43
108	Solid/solid phase transitions in confined thin films: A zero temperature approach. Journal of Chemical Physics, 2005, 122, 094709.	1.2	26

#	Article	IF	CITATIONS
109	Freezing/melting of Lennard-Jones fluids in carbon nanotubes. Applied Physics Letters, 2005, 86, 103110.	1.5	13
110	Modeling triblock surfactant-templated mesostructured cellular foams. Journal of Chemical Physics, 2005, 123, 134907.	1.2	27
111	Domain theory for capillary condensation hysteresis. Physical Review B, 2005, 72, .	1.1	57
112	Cosurfactant and cosolvent effects on surfactant self-assembly in supercritical carbon dioxide. Journal of Chemical Physics, 2005, 122, 094710.	1.2	54
113	Molecular modeling of freezing of simple fluids confined within carbon nanotubes. Journal of Chemical Physics, 2005, 122, 144706.	1.2	48
114	Freezing and melting of azeotropic mixtures confined in nanopores: experiment and molecular simulation. Molecular Physics, 2005, 103, 3103-3113.	0.8	34
115	Coarse-grained potentials from Widom's particle insertion method. Molecular Physics, 2005, 103, 3185-3193.	0.8	13
116	Dissociation of Water on Defective Carbon Substrates. Physical Review Letters, 2005, 95, 136105.	2.9	139
117	An experimental study of melting of CCl4 in carbon nanotubes. Physical Chemistry Chemical Physics, 2005, 7, 3884.	1.3	8
118	Vaporâ^'Liquid and Vaporâ^'Liquidâ^'Liquid Equilibria of Carbon Dioxide/n-Perfluoroalkane/n-Alkane Ternary Mixtures. Journal of Physical Chemistry B, 2005, 109, 2899-2910.	1.2	24
119	Effect of Temperature on the Adsorption of Water in Porous Carbons. Langmuir, 2005, 21, 9457-9467.	1.6	87
120	Water in carbon nanotubes: Adsorption isotherms and thermodynamic properties from molecular simulation. Journal of Chemical Physics, 2005, 122, 234712.	1.2	225
121	Argon and Nitrogen Adsorption in Disordered Nanoporous Carbons:Â Simulation and Experiment. Langmuir, 2005, 21, 4431-4440.	1.6	56
122	Molecular simulation of gas adsorption in realistic models of silica nanopores. European Journal of Control, 2005, 30, 375-383.	1.6	7
123	Freezing/melting behaviour within carbon nanotubes. Molecular Physics, 2004, 102, 223-234.	0.8	34
124	Reaction ensemble molecular dynamics: Direct simulation of the dynamic equilibrium properties of chemically reacting mixtures. Physical Review E, 2004, 70, 061103.	0.8	11
125	Freezing and melting of binary mixtures confined in a nanopore. Molecular Physics, 2004, 102, 2149-2163.	0.8	30
126	Simulated water adsorption isotherms in carbon nanopores. Molecular Physics, 2004, 102, 243-251.	0.8	91

#	Article	IF	CITATIONS
127	Multi-scale Molecular Modeling of Chemical Reactivity. Molecular Simulation, 2004, 30, 699-748.	0.9	60
128	Lattice Monte Carlo Simulations of Phase Separation and Micellization in Supercritical CO2/Surfactant Systems:  Effect of CO2 Density. Langmuir, 2004, 20, 514-523.	1.6	26
129	Anomalous Temperature Dependence of Surfactant Self-Assembly from Aqueous Solution. Physical Review Letters, 2004, 92, 135701.	2.9	41
130	Molecular dynamics simulations of simple fluids confined in realistic models of nanoporous carbons. European Physical Journal E, 2003, 12, 35-40.	0.7	21
131	Pore Size Distribution of Porous Glasses:Â A Test of the Independent Pore Model. Langmuir, 2003, 19, 8592-8604.	1.6	32
132	Water Adsorption in Carbon-Slit Nanopores. Langmuir, 2003, 19, 8583-8591.	1.6	212
133	Structural Modeling of Porous Carbons:Â Constrained Reverse Monte Carlo Method. Langmuir, 2003, 19, 8565-8582.	1.6	208
134	Phase Separation and Liquid Crystal Self-Assembly in Surfactantâ^'Inorganicâ^'Solvent Systems. Langmuir, 2003, 19, 2049-2057.	1.6	88
135	Effects of supercritical clustering and selective confinement on reaction equilibrium: A molecular simulation study of the esterification reaction. Journal of Chemical Physics, 2003, 119, 6057-6067.	1.2	38
136	Formation of Spherical Micelles in a supercritical Solvent: Lattice Monte Carlo Simulation and Multicomponent Solution Model. Molecular Simulation, 2003, 29, 139-157.	0.9	8
137	Comparison between Adsorption in Pores of a Simple Geometry and Realistic Models of Porous Materials. Materials Research Society Symposia Proceedings, 2003, 790, 1.	0.1	5
138	FREEZING/MELTING IN POROUS CARBONS. , 2003, , .		0
139	Global phase diagrams for freezing in porous media. Journal of Chemical Physics, 2002, 116, 1147-1155.	1.2	170
140	Influence of synthesis conditions on surface heterogeneity of M41 type materials studied with lattice Monte Carlo. Studies in Surface Science and Catalysis, 2002, 144, 647-654.	1.5	9
141	Nitrogen Adsorption in Carbon Aerogels:  A Molecular Simulation Study. Langmuir, 2002, 18, 2141-2151.	1.6	84
142	Adsorption of Water in Activated Carbons:  Effects of Pore Blocking and Connectivity. Langmuir, 2002, 18, 5438-5447.	1.6	160
143	Existence of a Hexatic Phase in Porous Media. Physical Review Letters, 2002, 89, 076101.	2.9	77
144	Predictions of the Jouleâ^'Thomson Inversion Curve for then-Alkane Series and Carbon Dioxide from the Soft-SAFT Equation of Stateâ€. Industrial & Engineering Chemistry Research, 2002, 41, 1069-1075.	1.8	39

#	Article	IF	CITATIONS
145	Effect of confinement by porous materials on chemical reaction kinetics. Journal of Chemical Physics, 2002, 116, 2138-2148.	1.2	67
146	Self-assembly of surfactants in a supercritical solvent from lattice Monte Carlo simulations. Journal of Chemical Physics, 2002, 116, 1171-1184.	1.2	63
147	Simulation of chemical reaction equilibria and kinetics in heterogeneous carbon micropores. Applied Surface Science, 2002, 196, 366-374.	3.1	33
148	Micellar behavior in supercritical solvent–surfactant systems from lattice Monte Carlo simulations. Fluid Phase Equilibria, 2002, 194-197, 233-247.	1.4	18
149	Phase behavior of PVAC–PTAN block copolymer in supercritical carbon dioxide using SAFT. Fluid Phase Equilibria, 2002, 194-197, 553-565.	1.4	12
150	Accurate CO2 Joule–Thomson inversion curve by molecular simulations. Fluid Phase Equilibria, 2002, 202, 253-262.	1.4	32
151	Dielectric studies of freezing behavior in porous materials: Water and methanol in activated carbon fibres. Physical Chemistry Chemical Physics, 2001, 3, 1179-1184.	1.3	72
152	Characterization of porous materials using molecular theory and simulation. Advances in Chemical Engineering, 2001, 28, 203-250.	0.5	25
153	Molecular-Based Equations of State for Associating Fluids: A Review of SAFT and Related Approaches. Industrial & Engineering Chemistry Research, 2001, 40, 2193-2211.	1.8	600
154	Effect of confinement on chemical reaction equilibria: The reactions 2NO⇔(NO)2 and N2+3H2⇔2NH3 in carbon micropores. Journal of Chemical Physics, 2001, 114, 1851-1859.	1.2	106
155	Melting/freezing behavior of a fluid confined in porous glasses and MCM-41: Dielectric spectroscopy and molecular simulation. Journal of Chemical Physics, 2001, 114, 950.	1.2	116
156	Effect of Confinement on Melting in Slit-Shaped Pores: Experimental and Simulation Study of Aniline in Activated Carbon Fibers. Molecular Simulation, 2001, 27, 323-337.	0.9	18
157	Freezing behavior in porous glasses and MCM-41. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 523-529.	2.3	97
158	Molecular modeling of carbon aerogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 531-538.	2.3	39
159	Water in porous carbons. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188, 539-568.	2.3	347
160	Influence of chemical and physical surface heterogeneity on chemical reaction equilibria in carbon micropores. Molecular Physics, 2001, 99, 1991-2001.	0.8	50
161	Synthesis and Characterization of Templated Mesoporous Materials Using Molecular Simulation. Molecular Simulation, 2001, 27, 339-352.	0.9	36
162	Computer Simulation of Isothermal Mass Transport in Graphite Slit Pores. Molecular Simulation, 2001, 27, 405-439.	0.9	12

#	Article	IF	CITATIONS
163	Characterization of Porous Materials Using Density Functional Theory and Molecular Simulation. Studies in Surface Science and Catalysis, 2000, 128, 41-50.	1.5	27
164	Combined Diffusive and Viscous Transport of Methane in a Carbon Slit Pore. Molecular Simulation, 2000, 25, 209-227.	0.9	31
165	Poiseuille flow of Lennard-Jones fluids in narrow slit pores. Journal of Chemical Physics, 2000, 112, 1984-1994.	1.2	260
166	Effect of the fluid-wall interaction on freezing of confined fluids: Toward the development of a global phase diagram. Journal of Chemical Physics, 2000, 112, 11048-11057.	1.2	160
167	Molecular simulation study of water–methanol mixtures in activated carbon pores. Journal of Chemical Physics, 2000, 113, 6933-6942.	1.2	93
168	Adsorption of Water Vaporâ^'Methane Mixtures on Activated Carbons. Langmuir, 2000, 16, 5418-5424.	1.6	124
169	Modeling Structural Morphology of Microporous Carbons by Reverse Monte Carlo. Langmuir, 2000, 16, 5761-5773.	1.6	206
170	12 Associating fluids and fluid mixtures. Experimental Thermodynamics, 2000, , 435-477.	0.1	28
171	Free energy studies of freezing in slit pores: an order-parameter approach using Monte Carlo simulation. Molecular Physics, 1999, 96, 1249-1267.	0.8	140
172	Transport Properties of Inhomogeneous Fluid Mixtures. International Journal of Thermophysics, 1999, 20, 805-813.	1.0	15
173	Pore Size Distributions in Porous Glasses:Â A Computer Simulation Study. Langmuir, 1999, 15, 305-308.	1.6	438
174	Adsorption of water—methanol mixtures in carbon and aluminosilicate pores: a molecular simulation study. Molecular Physics, 1999, 97, 1139-1148.	0.8	31
175	A Remarkable Elevation of Freezing Temperature of CCl4 in Graphitic Micropores. Journal of Physical Chemistry B, 1999, 103, 7061-7063.	1.2	87
176	Freezing of simple fluids in microporous activated carbon fibers: Comparison of simulation and experiment. Journal of Chemical Physics, 1999, 111, 9058-9067.	1.2	164
177	Phase Transitions in Pores: Experimental and Simulation Studies of Melting and Freezingâ€. Langmuir, 1999, 15, 6060-6069.	1.6	119
178	Constant pressure Gibbs ensemble Monte Carlo simulations of adsorption into narrow pores. Molecular Physics, 1999, 97, 955-965.	0.8	74
179	Phase separation in confined systems. Reports on Progress in Physics, 1999, 62, 1573-1659.	8.1	1,469
180	A Molecular Model for Adsorption of Water on Activated Carbon:Â Comparison of Simulation and Experiment. Langmuir, 1999, 15, 533-544.	1.6	287

#	Article	IF	CITATIONS
181	Quasi-Symmetry Structure of CCl4Molecular Assemblies in a Graphitic Nanopore:Â A Grand Canonical Monte Carlo Simulationâ€. Langmuir, 1999, 15, 5870-5875.	1.6	28
182	Correlation functions of adsorbed fluids in porous glass: a computer simulation study. Molecular Physics, 1999, 96, 1795-1804.	0.8	15
183	Transport Diffusion of Oxygenâ`'Nitrogen Mixtures in Graphite Pores:Â A Nonequilibrium Molecular Dynamics (NEMD) Studyâ€. Langmuir, 1999, 15, 6050-6059.	1.6	50
184	Molecular Simulation: Phase equilibria and confined systems. , 1999, , 2-11.		1
185	Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon, 1998, 36, 1433-1438.	5.4	180
186	Modeling new adsorbents for ethylene/ethane separations by adsorption via π-complexation. Fluid Phase Equilibria, 1998, 150-151, 117-124.	1.4	27
187	Characterization of Porous Glasses:Â Simulation Models, Adsorption Isotherms, and the Brunauerâ^'Emmettâ^'Teller Analysis Method. Langmuir, 1998, 14, 2097-2111.	1.6	405
188	Phase coexistence properties of polarizable water models. Molecular Physics, 1998, 94, 803-808.	0.8	90
189	Liquid-liquid phase separation in cylindrical pores: Quench molecular dynamics and Monte Carlo simulations. Physical Review E, 1997, 56, 3185-3196.	0.8	53
190	Kinetics of liquid-liquid phase separation of a binary mixture in cylindrical pores. Physical Review E, 1997, 55, R1290-R1293.	0.8	50
191	Quasi-One-Dimensional Phase Transitions in Nanopores: Pore-Pore Correlation Effects. Physical Review Letters, 1997, 79, 2847-2850.	2.9	74
192	Phase coexistence properties of polarizable Stockmayer fluids. Journal of Chemical Physics, 1997, 106, 3338-3347.	1.2	56
193	A Molecular Simulation Study of Pore Networking Effects. Molecular Simulation, 1997, 19, 267-283.	0.9	28
194	Molecular Modeling of Selective Adsorption from Mixtures. Materials Research Society Symposia Proceedings, 1997, 497, 231.	0.1	4
195	A molecular simulation study of freezing/melting phenomena for Lennard-Jones methane in cylindrical nanoscale pores. Journal of Chemical Physics, 1997, 107, 9659-9667.	1.2	142
196	Liquidâ^'Liquid Phase Equilibria in Porous Materials. Langmuir, 1997, 13, 1182-1188.	1.6	46
197	Quasihydrodynamics of nanofluid mixtures. Physical Review E, 1997, 56, 5367-5396.	0.8	27
198	Pore Width-Sensitive Filling Mechanism for CCl4 in a Graphitic Micropore by Computer Simulation. Langmuir, 1997, 13, 2545-2549.	1.6	44

#	Article	IF	CITATIONS
199	A study of viscosity inhomogeneity in porous media. Journal of Chemical Physics, 1997, 106, 4684-4695.	1.2	69
200	Characterization of MCM-41 Using Molecular Simulation:Â Heterogeneity Effects. Langmuir, 1997, 13, 1737-1745.	1.6	254
201	Freezing/melting phenomena for Lennard-Jones methane in slit pores: A Monte Carlo study. Journal of Chemical Physics, 1997, 106, 2865-2880.	1.2	187
202	Theory and Simulation of Adsorption in Micropores. , 1997, , 65-103.		12
203	Phase Equilibria Calculations with a Modified SAFT Equation of State. 1. Pure Alkanes, Alkanols, and Water. Industrial & Engineering Chemistry Research, 1996, 35, 4727-4737.	1.8	176
204	Phase Equilibria Calculations with a Modified SAFT Equation of State. 2. Binary Mixtures ofn-Alkanes, 1-Alkanols, and Water. Industrial & Engineering Chemistry Research, 1996, 35, 4738-4746.	1.8	129
205	Theoretical Studies on VPI-5. 2. Energy Decomposition Analysis of the Hydrophilicity. The Journal of Physical Chemistry, 1996, 100, 12424-12430.	2.9	9
206	Adsorption of Water on Activated Carbons:Â A Molecular Simulation Study. The Journal of Physical Chemistry, 1996, 100, 1189-1196.	2.9	353
207	Molecular Simulations of Phase Transitions in Pores. Molecular Simulation, 1996, 17, 333-367.	0.9	34
208	Molecular simulation of binary mixture adsorption in buckytubes and MCM-41. Adsorption, 1996, 2, 23-32.	1.4	48
209	Effect of surface active sites on adsorption of associating chain molecules in pores: A Monte Carlo study. Adsorption, 1996, 2, 59-68.	1.4	11
210	Separation of carbon dioxide–methane mixtures by adsorption: Effects of geometry and energetics on selectivity. Journal of Chemical Physics, 1996, 104, 8126-8134.	1.2	90
211	Adsorption Isotherms of Associating Fluids in Slit-Like Pores. A Monte Carlo Simulation Study. Kluwer International Series in Engineering and Computer Science, 1996, , 993-1000.	0.2	1
212	Simulation Studies of Pore Blocking Hysteresis in Model Porous Carbon Networks. Kluwer International Series in Engineering and Computer Science, 1996, , 571-578.	0.2	10
213	Molecular Simulation of Pure Fluid and Binary Mixture Adsorption in Buckytubes and MCM-41. Kluwer International Series in Engineering and Computer Science, 1996, , 563-570.	0.2	1
214	Local thermodynamics of inhomogeneous fluids at equilibrium. Physical Review E, 1995, 51, 261-265.	0.8	11
215	Water adsorption in microporous graphitic carbons. Molecular Physics, 1995, 84, 1139-1153.	0.8	71
216	Optimizing Removal of Trace Components from Nitrogen/X Mixtures Using Adsorption: Theory and Simulation. Langmuir, 1995, 11, 4758-4764.	1.6	21

#	Article	IF	CITATIONS
217	Vapour-liquid equilibria in two-dimensional Lennard-Jones fluids: unperturbed and substrate-mediated films. Molecular Physics, 1995, 86, 599-612.	0.8	45
218	Mixtures of Associating and Non-associating Chains on Activated Surfaces: A Monte Carlo Approach. Molecular Simulation, 1995, 15, 141-154.	0.9	9
219	Adsorption isotherms of associating chain molecules from Monte Carlo simulations. Molecular Physics, 1995, 85, 9-21.	0.8	24
220	Comment on the accuracy of Wertheim's theory of associating fluids. Journal of Chemical Physics, 1995, 103, 3868-3869.	1.2	19
221	An Equation of State for Water from a Simplified Intermolecular Potential. Industrial & Engineering Chemistry Research, 1995, 34, 3662-3673.	1.8	127
222	Modeling Fluid Behavior in Well-Characterized Porous Materials. Accounts of Chemical Research, 1995, 28, 281-288.	7.6	92
223	Molecular Simulation of Fluid Adsorption in Buckytubes. Langmuir, 1995, 11, 3988-3996.	1.6	120
224	Molecular dynamics study of the self-diffusion of supercritical methane in slit-shaped graphitic micropores. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1377.	1.7	59
225	Theory of Adsorption of Trace Components. The Journal of Physical Chemistry, 1994, 98, 2403-2411.	2.9	44
226	Molecular simulation of fluid adsorption in buckytubes and MCM-41. International Journal of Thermophysics, 1994, 15, 1115-1123.	1.0	46
227	Chemical potentials and adsorption isotherms of polymers confined between parallel plates. Chemical Engineering Science, 1994, 49, 2921-2929.	1.9	20
228	Theoretical studies on VPI-5. Origin of the hydrophilicity. Chemical Physics Letters, 1994, 227, 545-550.	1.2	8
229	Monte Carlo Implementation on the Connection Machine 2; Water in Graphite Pores. Molecular Simulation, 1994, 13, 205-219.	0.9	25
230	Equation of State for Lennard-Jones Chains. The Journal of Physical Chemistry, 1994, 98, 6413-6419.	2.9	237
231	Spectroscopic Data on the Kinetics of Hydrate Formation and Decomposition. Annals of the New York Academy of Sciences, 1994, 715, 561-563.	1.8	3
232	High-Pressure Adsorption of Methane and Ethane in Activated Carbon and Carbon Fibers. The Journal of Physical Chemistry, 1994, 98, 5709-5713.	2.9	79
233	Reactive canonical Monte Carlo. Molecular Physics, 1994, 81, 717-733.	0.8	191
234	Theory and simulation of associating fluids: Lennard-Jones chains with association sites. Molecular Physics, 1994, 83, 1209-1222.	0.8	40

#	Article	IF	CITATIONS
235	Pore Size Distribution Analysis and Networking: Studies of Microporous Sorbents. Studies in Surface Science and Catalysis, 1994, , 51-60.	1.5	27
236	The effect of pore geometry on adsorption behavior. Studies in Surface Science and Catalysis, 1994, 87, 41-50.	1.5	9
237	FT-infrared spectroscopic and molecular simulation studies of adsorption of simple gases, methanol and water on aluminophosphates. Studies in Surface Science and Catalysis, 1994, 87, 61-70.	1.5	2
238	Pore size distribution analysis of microporous carbons: a density functional theory approach. The Journal of Physical Chemistry, 1993, 97, 4786-4796.	2.9	1,058
239	Applications of molecular simulation. Fluid Phase Equilibria, 1993, 83, 1-14.	1.4	20
240	Thermodynamic and structural properties of methanol-water mixtures: experiment, theory, and molecular simulation. Fluid Phase Equilibria, 1993, 83, 51-58.	1.4	45
241	Transport theory of dense, strongly inhomogeneous fluids. Journal of Chemical Physics, 1993, 99, 8970-8996.	1.2	61
242	Adsorption, isosteric heat and commensurate-incommensurate transition of methane on graphite. Molecular Physics, 1993, 80, 103-116.	0.8	56
243	Triplet correlation function for hard sphere systems. Molecular Physics, 1993, 80, 91-101.	0.8	39
244	Pore size heterogeneity and the carbon slit pore: a density functional theory model. Langmuir, 1993, 9, 2693-2702.	1.6	316
245	Simulation of hard triatomic and tetratomic molecules. Molecular Physics, 1993, 80, 957-976.	0.8	75
246	The liquid structure and thermodynamic properties of Lennard-Jones spheres with association sites. Molecular Physics, 1993, 80, 65-89.	0.8	35
247	Layering, freezing transitions, capillary condensation and diffusion of methane in slit carbon pores. Molecular Physics, 1993, 79, 373-391.	0.8	89
248	Theoretical interpretation of adsorption behavior of simple fluids in slit pores. Langmuir, 1993, 9, 1801-1814.	1.6	238
249	Molecular simulation of adsorption and diffusion in VPI 5 and other aluminophosphates. Langmuir, 1993, 9, 824-830.	1.6	53
250	Solvation pressures for simple fluids in micropores. The Journal of Physical Chemistry, 1993, 97, 937-943.	2.9	88
251	Theoretical Interpretation and Classification of Adsorption Isotherms for Simple Fluids. Studies in Surface Science and Catalysis, 1993, 80, 27-34.	1.5	2
252	The Lennard-Jones equation of state revisited. Molecular Physics, 1993, 78, 591-618.	0.8	1,245

#	Article	IF	CITATIONS
253	Generalized compressibility equation for inhomogeneous fluids at equilibrium. Physical Review E, 1993, 48, 1819-1822.	0.8	12
254	Physical theory for fluids of small associating molecules. The Journal of Physical Chemistry, 1992, 96, 10995-11004.	2.9	39
255	Structure of water-methanol binary mixtures: role of the water-water interaction. Molecular Physics, 1992, 76, 1221-1233.	0.8	26
256	Dynamics of the Gay-Berne fluid. Physical Review A, 1992, 45, 3813-3822.	1.0	70
257	Monte Carlo study of quadrupolar Kihara fluids. Molecular Physics, 1992, 75, 881-895.	0.8	17
258	Phase equilibria for associating Lennard-Jones fluids from theory and simulation. Molecular Physics, 1992, 77, 1033-1053.	0.8	93
259	Molecular Simulation of Adsorption of Simple Gases in Aluminophosphates and Pillared Clays. Materials Research Society Symposia Proceedings, 1992, 290, 135.	0.1	11
260	Computer Simulation Study of Adsorption, Isosteric Heat and Phase Transitions of Methane on Graphite. Materials Research Society Symposia Proceedings, 1992, 290, 191.	0.1	2
261	Selective adsorption of simple mixtures in slit pores: a model of methane-ethane mixtures in carbon. The Journal of Physical Chemistry, 1992, 96, 845-854.	2.9	143
262	Classification of adsorption behavior: simple fluids in pores of slit-shaped geometry. Fluid Phase Equilibria, 1992, 76, 21-35.	1.4	59
263	Thermodynamics of fluids of small associating molecules. Fluid Phase Equilibria, 1992, 76, 49-69.	1.4	5
264	Dense inhomogeneous fluids: Functional perturbation theory, the generalized Langevin equation, and kinetic theory. Journal of Chemical Physics, 1991, 94, 1367-1384.	1.2	41
265	Properties of simple fluids in carbon micropores. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 2011.	1.7	15
266	Liquid crystal phase diagram of the Gay-Berne fluid. Molecular Physics, 1991, 74, 405-424.	0.8	256
267	7 Thermodynamics. Advances in Chemical Engineering, 1991, 16, 125-154.	0.5	1
268	Theory of Adsorption in Micropores. Studies in Surface Science and Catalysis, 1991, , 21-30.	1.5	1
269	Effect of molecular elongation on liquid-vapour properties: computer simulation and virial approximation. Physica A: Statistical Mechanics and Its Applications, 1991, 177, 174-181.	1.2	24
270	A Molecular Simulation of A Liquid-crystal Model. Molecular Simulation, 1991, 7, 357-385.	0.9	79

#	Article	IF	CITATIONS
271	Models for selfâ€diffusion in the square well fluid. Journal of Chemical Physics, 1991, 94, 3132-3140.	1.2	10
272	Location of the isotropic-nematic transition in the Gay-Berne model. Molecular Physics, 1991, 72, 593-605.	0.8	131
273	Liquid-vapour coexistence of the Gay-Berne fluid by Gibbs-ensemble simulation. Molecular Physics, 1990, 71, 1223-1231.	0.8	76
274	Adsorption in carbon micropores at supercritical temperatures. The Journal of Physical Chemistry, 1990, 94, 6061-6069.	2.9	207
275	New reference equation of state for associating liquids. Industrial & Engineering Chemistry Research, 1990, 29, 1709-1721.	1.8	1,799
276	A modified thermodynamic perturbation theory equation for molecules with fused hard sphere cores. The Journal of Physical Chemistry, 1990, 94, 5115-5120.	2.9	64
277	Layering transitions in cylindrical pores. Journal of Chemical Physics, 1990, 93, 679-685.	1.2	71
278	Hydrogen bonding in liquid methanol. Journal of Chemical Physics, 1990, 93, 1981-1994.	1.2	190
279	Hardâ€sphere mixtures near a hard wall. Journal of Chemical Physics, 1989, 90, 3704-3712.	1.2	86
280	Lennard-Jones Mixtures in a Cylindrical Pore. A Comparison of Simulation and Density Functional Theory. Molecular Simulation, 1989, 2, 393-411.	0.9	53
281	Mixtures of associating spherical and chain molecules. Pure and Applied Chemistry, 1989, 61, 1021-1026.	0.9	84
282	The Role of Computer Simulation in Studying Fluid Phase Equilibria. Molecular Simulation, 1989, 2, 223-252.	0.9	81
283	Fluid mixtures in narrow cylindrical pores: Computer simulation and theory. International Journal of Thermophysics, 1988, 9, 1051-1060.	1.0	14
284	Phase equilibria of associating fluids of spherical and chain molecules. International Journal of Thermophysics, 1988, 9, 769-779.	1.0	18
285	Phase equilibria of associating fluids. Molecular Physics, 1988, 65, 1057-1079.	0.8	1,102
286	Lennardâ€Jones fluids in cylindrical pores: Nonlocal theory and computer simulation. Journal of Chemical Physics, 1988, 88, 6487-6500.	1.2	224
287	Phase equilibria of associating fluids. Molecular Physics, 1988, 65, 1-31.	0.8	1,107
288	Adsorption hysteresis in narrow pores. Journal of Chemical Physics, 1988, 89, 5202-5205.	1.2	88

#	Article	IF	CITATIONS
289	Liquid-vapour coexistence in a cylindrical pore. Molecular Physics, 1987, 61, 1381-1390.	0.8	95
290	Mixtures of polar and associating molecules. Pure and Applied Chemistry, 1987, 59, 53-60.	0.9	32
291	Lennard-Jones mixtures in cylindrical pores. Molecular Physics, 1987, 62, 1213-1224.	0.8	39
292	The liquid–vapor interface of simple polar fluids. II. Computer simulation. Journal of Chemical Physics, 1987, 86, 2299-2308.	1.2	57
293	The liquid–vapor interface of simple polar fluids. I. Integral equation and perturbation theories. Journal of Chemical Physics, 1987, 86, 2286-2298.	1.2	43
294	Phase transitions in a cylindrical pore. Molecular Physics, 1987, 62, 215-226.	0.8	268
295	Liquid drops of polar molecules. Journal of Chemical Physics, 1986, 85, 2178-2186.	1.2	40
296	Fluid behaviour in narrow pores. Journal of the Chemical Society, Faraday Transactions 2, 1986, 82, 1789.	1.1	157
297	A microscopic theory for spherical interfaces: Liquid drops in the canonical ensemble. Journal of Chemical Physics, 1986, 85, 490-499.	1.2	81
298	Microscopic studies of fluids in pores: Computer simulation and mean-field theory. International Journal of Thermophysics, 1985, 6, 585-593.	1.0	27
299	Adsorption and surface tension reduction at the vapor-liquid interface. The Journal of Physical Chemistry, 1985, 89, 1514-1519.	2.9	51
300	A molecular dynamics study of liquid drops. Journal of Chemical Physics, 1984, 81, 530-542.	1.2	433
301	Pure quadrupolar dumbbell fluids. Theory and simulation. The Journal of Physical Chemistry, 1984, 88, 6559-6566.	2.9	32
302	Theory of Molecular Fluids. , 1984, , .		1,301
303	Equations of state - new theories. Fluid Phase Equilibria, 1983, 13, 35-57.	1.4	18
304	Thermodynamics of liquid mixtures of nitrous oxide and ethene. Journal of the Chemical Society, Faraday Transactions 2, 1983, 79, 1399.	1.1	13
305	Thermodynamic study of liquid mixtures of ethane and ethene. Journal of the Chemical Society Faraday Transactions I, 1983, 79, 2657.	1.0	10
306	Equilibrium properties of the Gaussian overlap fluid. Monte Carlo simulation and thermodynamic perturbation theory. The Journal of Physical Chemistry, 1983, 87, 2852-2858.	2.9	25

#	Article	IF	CITATIONS
307	Fluid phase equilibriums: experiment, computer simulation, and theory. The Journal of Physical Chemistry, 1983, 87, 4573-4585.	2.9	67
308	Thermodynamics of liquid mixtures of xenon and carbon tetrafluoride. Journal of the Chemical Society, Faraday Transactions 2, 1981, 77, 425.	1.1	24
309	Orientational structure at a vapor–liquid interface: Effect of electrostatic forces. Journal of Chemical Physics, 1981, 75, 1325-1332.	1.2	40
310	Structure of the liquid–vapor interface of molecular fluids: Homonuclear diatomic molecules. Journal of Chemical Physics, 1981, 74, 6467-6479.	1.2	41
311	Thermodynamics of liquid mixtures of nitrous oxide and xenon. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 2496.	1.0	15
312	Enthalpy of mixing of liquid hydrogen chloride and liquid xenon. Comparison of experiment and theory. Journal of the Chemical Society Faraday Transactions I, 1980, 76, 174.	1.0	24
313	Molecular orientation at a vapor–liquid interface: Theoretical and computer simulation results for a model of chlorine. Journal of Chemical Physics, 1979, 70, 4947-4951.	1.2	46
314	The self-diffusion coefficient for a square well fluid. Chemical Physics Letters, 1979, 64, 142-145.	1.2	10
315	A correlation of the viscosity and thermal conductivity data of gaseous and liquid propane. Journal of Physical and Chemical Reference Data, 1979, 8, 559-575.	1.9	46
316	Perturbation theory for molecular fluids: Third-order term in the Pople expansion. Journal of Chemical Physics, 1978, 69, 182.	1.2	54
317	Thermodynamics of polar liquid mixtures. Faraday Discussions of the Chemical Society, 1978, 66, 116.	2.2	39
318	Thermodynamics of binary liquid mixtures involving hydrogen bromide, hydrogen chloride and xenon. Journal of the Chemical Society Faraday Transactions I, 1978, 74, 893.	1.0	47
319	Surface tension of polar liquids. Journal of Chemical Physics, 1977, 66, 364-365.	1.2	9
320	Liquids of Linear Molecules: Computer Simulations and Theory. Annual Review of Physical Chemistry, 1977, 28, 373-410.	4.8	100
321	A correlation of the existing viscosity and thermal conductivity data of gaseous and liquid ethane. Journal of Physical and Chemical Reference Data, 1977, 6, 1167-1180.	1.9	26
322	Thermodynamics of mixtures of nonspherical molecules. III. Fluid phase equilibria and critical loci. Journal of Chemical Physics, 1976, 64, 5186-5197.	1.2	60
323	Theory of surface tension for molecular liquids. II. Perturbation theory calculations. Journal of Chemical Physics, 1976, 64, 2569.	1.2	45
324	Vapor–liquid interfacial densityâ€orientation profiles for fluids with anisotropic potentials. Journal of Chemical Physics, 1976, 64, 1852-1853.	1.2	32

#	Article	IF	CITATIONS
325	A new perturbation expansion for fluids of nonspherical molecules. Journal of Chemical Physics, 1975, 63, 1490-1498.	1.2	45
326	MOLECULAR PRINCIPLE OF CORRESPONDING STATES FOR VISCOSITY AND THERMAL CONDUCTIVITY OF FLUID MIXTURES. Chemical Engineering Communications, 1974, 1, 281-290.	1.5	16
327	Isothermal compressibility and partial molal volume for polyatomic liquids. Journal of Chemical Physics, 1974, 60, 3449-3453.	1.2	26
328	Perturbation methods for calculating properties of liquid mixtures. AICHE Journal, 1973, 19, 684-698.	1.8	21
329	Theory of diffusion of gases in protein solutions. Canadian Journal of Chemical Engineering, 1972, 50, 85-88.	0.9	5
330	Theory of gas solubility in mixed solvent systems. Canadian Journal of Chemical Engineering, 1972, 50, 361-365.	0.9	28
331	Kinetic Theory of Multicomponent Dense Fluid Mixtures of Rigid Spheres. Journal of Chemical Physics, 1971, 55, 268-279.	1.2	99
332	Correspondence Principle for Transport Properties of Dense Fluids. Nonpolar Polyatomic Fluids. Industrial & Engineering Chemistry Fundamentals, 1970, 9, 63-70.	0.7	35
333	Correspondence Principle for Transport Properties of Dense Fluids. Pure Monatomic Fluids. Industrial & Engineering Chemistry Fundamentals, 1969, 8, 791-795.	0.7	21
334	Solubility of nonpolar gases in concentrated electrolyte solutions. The Journal of Physical Chemistry, 1969, 73, 498-505.	2.9	99
335	General Theory of the Longâ€Range Pairâ€Correlation Function. Journal of Chemical Physics, 1968, 49, 5265-5269.	1.2	7
336	Temperature Dependence of the Rigidâ€ S phere Diameter in the Enskog Equations. Journal of Chemical Physics, 1968, 48, 1404-1405.	1.2	3
337	Diffusion of gases in electrolytic solutions. AICHE Journal, 1966, 12, 548-552.	1.8	55
338	Viscosity of Cryogenic Liquid Mixtures (Including LNG) from Corresponding States Methods. , 1960, , 501-508.		1