Taito Osaka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7442181/publications.pdf

Version: 2024-02-01

759233 713466 29 492 12 21 citations h-index g-index papers 30 30 30 580 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Hard x-ray intensity autocorrelation using direct two-photon absorption. Physical Review Research, 2022, 4, .	3.6	8
2	Double-multilayer monochromators for high-energy and large-field X-ray imaging applications with intense pink beams at SPring-8 BL20B2. Journal of Synchrotron Radiation, 2022, 29, 1265-1272.	2.4	7
3	Hard X-ray nanoprobe scanner. IUCrJ, 2021, 8, 713-718.	2.2	2
4	Shortening X-Ray Pulse Duration via Saturable Absorption. Physical Review Letters, 2021, 127, 163903.	7.8	13
5	Split-pulse X-ray photon correlation spectroscopy with seeded X-rays from X-ray laser to study atomic-level dynamics. Nature Communications, 2020, 11, 6213.	12.8	16
6	Feasibility study of interferometric phase-contrast X-ray imaging using the hard-X-ray free-electron laser of the SPring-8 Angstrom Compact Free-Electron Laser. Journal of Synchrotron Radiation, 2020, 27, 1358-1361.	2.4	3
7	Nanofocusing Optics for an X-Ray Free-Electron Laser Generating an Extreme Intensity of 100 EW/cm2 Using Total Reflection Mirrors. Applied Sciences (Switzerland), 2020, 10, 2611.	2.5	17
8	Realizing split-pulse x-ray photon correlation spectroscopy to measure ultrafast dynamics in complex matter. Physical Review Research, 2020, 2, .	3.6	12
9	Generation of an X-ray nanobeam of a free-electron laser using reflective optics with speckle interferometry. Journal of Synchrotron Radiation, 2020, 27, 883-889.	2.4	8
10	Focus characterization of an X-ray free-electron laser by intensity correlation measurement of X-ray fluorescence. Journal of Synchrotron Radiation, 2020, 27, 1366-1371.	2.4	6
11	Two-color X-ray free-electron laser consisting of broadband and narrowband beams. Journal of Synchrotron Radiation, 2020, 27, 1720-1724.	2.4	3
12	High-resolution micro channel-cut crystal monochromator processed by plasma chemical vaporization machining for a reflection self-seeded X-ray free-electron laser. Optics Express, 2020, 28, 25706.	3.4	6
13	A test bench of X-ray optics for next-generation high-energy high-flux X-ray beamlines. , 2020, , .		1
14	Determination of X-ray pulse duration via intensity correlation measurements of X-ray fluorescence. Journal of Synchrotron Radiation, 2019, 26, 2050-2054.	2.4	24
15	Generation of narrow-band X-ray free-electron laser via reflection self-seeding. Nature Photonics, 2019, 13, 319-322.	31.4	81
16	A micro channel-cut crystal X-ray monochromator for a self-seeded hard X-ray free-electron laser. Journal of Synchrotron Radiation, 2019, 26, 1496-1502.	2.4	9
17	X-ray optics for advanced ultrafast pump–probe X-ray experiments at SACLA. Journal of Synchrotron Radiation, 2019, 26, 333-338.	2.4	22
18	Surface Finishing Method Using Plasma Chemical Vaporization Machining for Narrow Channel Walls of X-Ray Crystal Monochromators. International Journal of Automation Technology, 2019, 13, 246-253.	1.0	4

TAITO OSAKA

#	Article	IF	CITATION
19	An X-ray harmonic separator for next-generation synchrotron X-ray sources and X-ray free-electron lasers. Journal of Synchrotron Radiation, 2018, 25, 346-353.	2.4	8
20	Stabilization of X-ray Beamline Optics towards Tens of Nanoradian Levels at SPring-8/SACLA. Synchrotron Radiation News, 2018, 31, 33-37.	0.8	1
21	Systematic-error-free wavefront measurement using an X-ray single-grating interferometer. Review of Scientific Instruments, 2018, 89, 043106.	1.3	13
22	Nonlinear Spectroscopy with X-Ray Two-Photon Absorption in Metallic Copper. Physical Review Letters, 2018, 121, 083901.	7.8	38
23	Performance of a hard X-ray split-and-delay optical system with a wavefront division. Journal of Synchrotron Radiation, 2018, 25, 20-25.	2.4	25
24	Overview of optics, photon diagnostics and experimental instruments at SACLA: development, operation and scientific applications. , 2017 , , .		3
25	Characterization of temporal coherence of hard X-ray free-electron laser pulses with single-shot interferograms. IUCrJ, 2017, 4, 728-733.	2.2	32
26	Development of speckle-free channel-cut crystal optics using plasma chemical vaporization machining for coherent x-ray applications. Review of Scientific Instruments, 2016, 87, 063118.	1.3	14
27	Wavelength-tunable split-and-delay optical system for hard X-ray free-electron lasers. Optics Express, 2016, 24, 9187.	3.4	52
28	A Bragg beam splitter for hard x-ray free-electron lasers. Optics Express, 2013, 21, 2823.	3.4	55
29	Fabrication of Ultrathin Bragg Beam Splitter by Plasma Chemical Vaporization Machining. Key Engineering Materials, 0, 523-524, 40-45.	0.4	8