
Theerapong Krajaejun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7441896/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire. Genome Biology, 2010, 11, R73.	9.6	391
2	Clinical and Epidemiological Analyses of Human Pythiosis in Thailand. Clinical Infectious Diseases, 2006, 43, 569-576.	5.8	201
3	Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic oomycete Pythium insidiosum. Fungal Biology, 2011, 115, 683-696.	2.5	53
4	Evolution of the Sterol Biosynthetic Pathway of Pythium insidiosum and Related Oomycetes Contributes to Antifungal Drug Resistance. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	53
5	Development of an Immunochromatographic Test for Rapid Serodiagnosis of Human Pythiosis. Vaccine Journal, 2009, 16, 506-509.	3.1	51
6	Draft Genome Sequence of the Pathogenic Oomycete Pythium insidiosum Strain Pi-S, Isolated from a Patient with Pythiosis. Genome Announcements, 2015, 3, .	0.8	47
7	Recent update in diagnosis and treatment of human pythiosis. PeerJ, 2020, 8, e8555.	2.0	44
8	Protein A/G-based immunochromatographic test for serodiagnosis of pythiosis in human and animal subjects from Asia and Americas. Medical Mycology, 2016, 54, 641-647.	0.7	43
9	Performance comparison of immunodiffusion, enzyme-linked immunosorbent assay, immunochromatography and hemagglutination for serodiagnosis of human pythiosis. Diagnostic Microbiology and Infectious Disease, 2013, 76, 42-45.	1.8	42
10	Ocular pythiosis: is it under-diagnosed?. American Journal of Ophthalmology, 2004, 137, 370-372.	3.3	41
11	Hemagglutination Test for Rapid Serodiagnosis of Human Pythiosis. Vaccine Journal, 2009, 16, 1047-1051.	3.1	41
12	Transcriptome analysis reveals pathogenicity and evolutionary history of the pathogenic oomycete Pythium insidiosum. Fungal Biology, 2014, 118, 640-653.	2.5	38
13	Development and Evaluation of an In-House Enzyme-Linked Immunosorbent Assay for Early Diagnosis and Monitoring of Human Pythiosis. Vaccine Journal, 2002, 9, 378-382.	3.1	35
14	Identification of a Novel 74-Kilodalton Immunodominant Antigen of Pythium insidiosum Recognized by Sera from Human Patients with Pythiosis. Journal of Clinical Microbiology, 2006, 44, 1674-1680.	3.9	35
15	Probing the Phylogenomics and Putative Pathogenicity Genes of Pythium insidiosum by Oomycete Genome Analyses. Scientific Reports, 2018, 8, 4135.	3.3	35
16	Phylogenetic analysis of <i>Pythium insidiosum</i> Thai strains using cytochrome oxidase II (<i>COX</i> II) DNA coding sequences and internal transcribed spacer regions (ITS). Medical Mycology, 2011, 49, 289-295.	0.7	34
17	Single nucleotide polymorphism-based multiplex PCR for identification and genotyping of the oomycete Pythium insidiosum from humans, animals and the environment. Infection, Genetics and Evolution, 2017, 54, 429-436.	2.3	32
18	Detection of the oomycete Pythium insidiosum by real-time PCR targeting the gene coding for exo-1,3-Î ² -glucanase. Journal of Medical Microbiology, 2015, 64, 971-977.	1.8	32

#	Article	IF	CITATIONS
19	Development and Application of a Green Fluorescent Protein Sentinel System for Identification of RNA Interference in Blastomyces dermatitidis Illuminates the Role of Septin in Morphogenesis and Sporulation. Eukaryotic Cell, 2007, 6, 1299-1309.	3.4	30
20	Assessment of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification and biotyping of the pathogenic oomycete Pythium insidiosum. International Journal of Infectious Diseases, 2018, 77, 61-67.	3.3	27
21	Safety, Tolerability, and Immunogenicity of a Recombinant, Genetically Engineered, Live-Attenuated Vaccine against Canine Blastomycosis. Vaccine Journal, 2011, 18, 783-789.	3.1	25
22	Global Distribution and Clinical Features of Pythiosis in Humans and Animals. Journal of Fungi (Basel,) Tj ETQq0) 0 0 ggBT /0	Overlock 10 Ti 25
23	Evaluation of an in-house immunoperoxidase staining assay for histodiagnosis of human pythiosis. Southeast Asian Journal of Tropical Medicine and Public Health, 2009, 40, 1298-305.	1.0	24
24	The Elicitin-Like Glycoprotein, ELI025, Is Secreted by the Pathogenic Oomycete Pythium insidiosum and Evades Host Antibody Responses. PLoS ONE, 2015, 10, e0118547.	2.5	22
25	Development of an Anti-Elicitin Antibody-Based Immunohistochemical Assay for Diagnosis of Pythiosis. Journal of Clinical Microbiology, 2016, 54, 43-48.	3.9	21
26	Review of methods and antimicrobial agents for susceptibility testing against Pythium insidiosum. Heliyon, 2020, 6, e03737.	3.2	21
27	PCR amplification of a putative gene for exo-1,3-β-glucanase to identify the pathogenic oomycete Pythium insidiosum. Asian Biomedicine, 2014, 8, 637-644.	0.3	21
28	Draft genome and sequence variant data of the oomycete Pythium insidiosum strain Pi45 from the phylogenetically-distinct Clade-III. Data in Brief, 2017, 15, 896-900.	1.0	18
29	Clinicopathological features and outcomes of pythiosis. International Journal of Infectious Diseases, 2018, 71, 33-41.	3.3	17
30	Draft genome sequences of the oomycete Pythium insidiosum strain CBS 573.85 from a horse with pythiosis and strain CR02 from the environment. Data in Brief, 2018, 16, 47-50.	1.0	17
31	Protein A/G-based enzyme-linked immunosorbent assay for detection of anti-Pythium insidiosum antibodies in human and animal subjects. BMC Research Notes, 2020, 13, 135.	1.4	16
32	Efficiency comparison of three methods for extracting genomic DNA of the pathogenic oomycete Pythium insidiosum. Journal of the Medical Association of Thailand = Chotmaihet Thangphaet, 2014, 97, 342-8.	0.1	16
33	Data on whole genome sequencing of the oomycete Pythium insidiosum strain CBS 101555 from a horse with pythiosis in Brazil. BMC Research Notes, 2018, 11, 880.	1.4	14
34	The Repurposed Drug Disulfiram Inhibits Urease and Aldehyde Dehydrogenase and Prevents <i>In Vitro</i> Growth of the Oomycete <i>Pythium insidiosum</i> . Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	14
35	A peptide ELISA to detect antibodies against Pythium insidiosum based on predicted antigenic determinants of exo-1,3-beta-glucanase. Southeast Asian Journal of Tropical Medicine and Public Health, 2013, 44, 672-80.	1.0	14
36	Loop-mediated Isothermal Amplification (LAMP) for Identification of Pythium insidiosum. International Journal of Infectious Diseases, 2020, 101, 149-159.	3.3	13

THEERAPONG KRAJAEJUN

#	Article	IF	CITATIONS
37	History and Perspective of Immunotherapy for Pythiosis. Vaccines, 2021, 9, 1080.	4.4	13
38	The 74-Kilodalton Immunodominant Antigen of the Pathogenic Oomycete <i>Pythium insidiosum</i> Is a Putative Exo-1,3-ß-Glucanase. Vaccine Journal, 2010, 17, 1203-1210.	3.1	12
39	The Immunoreactive Exo-1,3-β-Glucanase from the Pathogenic Oomycete Pythium insidiosum Is Temperature Regulated and Exhibits Glycoside Hydrolase Activity. PLoS ONE, 2015, 10, e0135239.	2.5	12
40	Effect of temperature on growth of the pathogenic oomycete Pythium insidiosum. Southeast Asian Journal of Tropical Medicine and Public Health, 2010, 41, 1462-6.	1.0	12
41	Comparative mitochondrial genome analysis of Pythium insidiosum and related oomycete species provides new insights into genetic variation and phylogenetic relationships. Gene, 2016, 575, 34-41.	2.2	11
42	Vascular pythiosis of carotid artery with meningitis and cerebral septic emboli: A case report and literature review. Medical Mycology Case Reports, 2018, 21, 57-62.	1.3	11
43	Oomycete Gene Table: an online database for comparative genomic analyses of the oomycete microorganisms. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	11
44	Evaluation of nested pcr technique for detection of Pythium insidiosum in pathological specimens from patients with suspected fungal keratitis. Southeast Asian Journal of Tropical Medicine and Public Health, 2014, 45, 167-73.	1.0	11
45	Discordant Influence of <i>Blastomyces dermatitidis</i> Yeast-Phase-Specific Gene <i>BYS1</i> on Morphogenesis and Virulence. Infection and Immunity, 2010, 78, 2522-2528.	2.2	10
46	Identification and Biotyping of Pythium insidiosum Isolated from Urban and Rural Areas of Thailand by Multiplex PCR, DNA Barcode, and Proteomic Analyses. Journal of Fungi (Basel, Switzerland), 2021, 7, 242.	3.5	9
47	In vitro antimicrobial activity of volatile organic compounds from Muscodor crispans against the pathogenic oomycete Pythium insidiosum. Southeast Asian Journal of Tropical Medicine and Public Health, 2012, 43, 1474-83.	1.0	9
48	Draft genome sequence of the oomycete Pythium destruens strain ATCC 64221 from a horse with pythiosis in Australia. BMC Research Notes, 2020, 13, 329.	1.4	8
49	Genome data of four Pythium insidiosum strains from the phylogenetically-distinct clades I, II, and III. BMC Research Notes, 2021, 14, 197.	1.4	7
50	First confirmed case of nasal pythiosis in a horse in Thailand. JMM Case Reports, 2018, 5, e005136.	1.3	7
51	Seroprevalence of anti–- <i>Pythium insidiosum</i> antibodies in the Thai population. Medical Mycology, 2019, 57, 284-290.	0.7	6
52	Biochemical and genetic analyses of the oomycete <i>Pythium insidiosum</i> provide new insights into clinical identification and urease-based evolution of metabolism-related traits. PeerJ, 2018, 6, e4821.	2.0	6
53	Geographic variation in the elicitin-like glycoprotein, ELI025, of Pythium insidiosum isolated from human and animal subjects. Infection, Genetics and Evolution, 2015, 35, 127-133.	2.3	5
54	Automated Cell-Free Multiprotein Synthesis Facilitates the Identification of a Secretory, Oligopeptide Elicitor-Like, Immunoreactive Protein of the Oomycete Pythium insidiosum. MSystems, 2020, 5, .	3.8	5

#	Article	IF	CITATIONS
55	Assessment of temperature-dependent proteomes of Pythium insidiosum by using the SWISS-PROT database. Medical Mycology, 2019, 57, 918-921.	0.7	4
56	Expression, purification, and characterization of the recombinant exo-1,3-Î ² -glucanase (Exo1) of the pathogenic oomycete Pythium insidiosum. Heliyon, 2020, 6, e04237.	3.2	3
57	Immunological Cross-Reactivity of Proteins Extracted from the Oomycete Pythium insidiosum and the Fungus Basidiobolus ranarum Compromises the Detection Specificity of Immunodiagnostic Assays for Pythiosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 474.	3.5	3
58	Random amplified polymorphic DNA typing and phylogeny of Pythium insidiosum clinical isolates in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 2007, 38, 383-91.	1.0	3
59	Severe skin and soft tissue pythiosis acquired in a hot spring in the southwestern United States, a case report and review of North American cases. Travel Medicine and Infectious Disease, 2022, 48, 102349.	3.0	3
60	Prospecting Biomarkers for Diagnostic and Therapeutic Approaches in Pythiosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 423.	3.5	2
61	Secretome Profiling by Proteogenomic Analysis Shows Species-Specific, Temperature-Dependent, and Putative Virulence Proteins of Pythium insidiosum. Journal of Fungi (Basel, Switzerland), 2022, 8, 527.	3.5	2
62	12. Pythiosis. , 2014, , 263-278.		1
63	Pythium. , 2011, , .		1
64	Pythiosis. , 2019, , 3-26.		1
65	Pythiosis. , 2012, , 485-487.		Ο