
E Michael Ostap

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7441659/publications.pdf Version: 2024-02-01

F MICHAEL OSTAD

#	Article	IF	CITATIONS
1	Microtubule dynamics influence the retrograde biased motility of kinesin-4 motor teams in neuronal dendrites. Molecular Biology of the Cell, 2022, 33, mbcE21100480.	2.1	11
2	Myosin modulators: emerging approaches for the treatment of cardiomyopathies and heart failure. Journal of Clinical Investigation, 2022, 132, .	8.2	33
3	Myosin with hypertrophic cardiac mutation R712L has a decreased working stroke which is rescued by omecamtiv mecarbil. ELife, 2021, 10, .	6.0	30
4	The regulatory protein 14-3-3β binds to the IQ motifs of myosin-IC independent of phosphorylation. Journal of Biological Chemistry, 2020, 295, 3749-3756.	3.4	3
5	The mechanochemistry of the kinesin-2 KIF3AC heterodimer is related to strain-dependent kinetic properties of KIF3A and KIF3C. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15632-15641.	7.1	9
6	Modulation of Kinesin's Load-Bearing Capacity by Force Geometry and the Microtubule Track. Biophysical Journal, 2020, 118, 243-253.	0.5	38
7	Motors in transport and cytoskeleton remodeling. Molecular Biology of the Cell, 2019, 30, 734-734.	2.1	0
8	Single molecule mechanics resolves the earliest events in force generation by cardiac myosin. ELife, 2019, 8, .	6.0	68
9	High-resolution cryo-EM structures of actin-bound myosin states reveal the mechanism of myosin force sensing. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 1292-1297.	7.1	109
10	Opposing Kinesin and Myosin-I Motors Drive Membrane Deformation and Tubulation along Engineered Cytoskeletal Networks. Current Biology, 2018, 28, 236-248.e5.	3.9	19
11	Opening remarks from the Editors. Biophysical Reviews, 2018, 10, 1479-1480.	3.2	0
12	Positive cardiac inotrope omecamtiv mecarbil activates muscle despite suppressing the myosin working stroke. Nature Communications, 2018, 9, 3838.	12.8	107
13	Electro-optic deflectors deliver advantages over acousto-optical deflectors in a high resolution, ultra-fast force-clamp optical trap. Optics Express, 2018, 26, 11181.	3.4	16
14	Deconvolution of Camera Instrument Response Functions. Biophysical Journal, 2017, 112, 1214-1220.	0.5	3
15	Adhesion force and attachment lifetime of the KIF16B-PX domain interaction with lipid membranes. Molecular Biology of the Cell, 2017, 28, 3315-3322.	2.1	13
16	Measuring the Kinetic and Mechanical Properties of Non-processive Myosins Using Optical Tweezers. Methods in Molecular Biology, 2017, 1486, 483-509.	0.9	21
17	An ultra-fast EOD-based force-clamp detects rapid biomechanical transitions. , 2017, , .		5
18	MEMLET: An Easy-to-Use Tool for Data Fitting and Model Comparison Using Maximum-Likelihood Estimation. Biophysical Journal, 2016, 111, 273-282.	0.5	58

E MICHAEL OSTAP

#	Article	IF	CITATIONS
19	Myosin-I molecular motors at a glance. Journal of Cell Science, 2016, 129, 2689-95.	2.0	88
20	Activity-Dependent Regulation of Distinct Transport and Cytoskeletal Remodeling Functions of the Dendritic Kinesin KIF21B. Neuron, 2016, 92, 857-872.	8.1	65
21	Force Generation by Membrane-Associated Myosin-I. Scientific Reports, 2016, 6, 25524.	3.3	28
22	A Perspective on the Role of Myosins as Mechanosensors. Biophysical Journal, 2016, 110, 2568-2576.	0.5	64
23	An Actin Filament Population Defined by the Tropomyosin Tpm3.1 Regulates Glucose Uptake. Traffic, 2015, 16, 691-711.	2.7	61
24	Control of the Initiation and Termination of Kinesin-1-Driven Transport by Myosin-Ic and Nonmuscle Tropomyosin. Current Biology, 2015, 25, 523-529.	3.9	34
25	WHAMM Directs the Arp2/3 Complex to the ER for Autophagosome Biogenesis through an Actin Comet Tail Mechanism. Current Biology, 2015, 25, 1791-1797.	3.9	107
26	Mechanochemical tuning of myosin-I by the N-terminal region. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3337-44.	7.1	38
27	A vertebrate myosin-I structure reveals unique insights into myosin mechanochemical tuning. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2116-2121.	7.1	41
28	Inherent Force-Dependent Properties of β -Cardiac Myosin Contribute to the Force-Velocity Relationship of Cardiac Muscle. Biophysical Journal, 2014, 107, L41-L44.	0.5	98
29	Dynactin functions as both a dynamic tether and brake during dynein-driven motility. Nature Communications, 2014, 5, 4807.	12.8	80
30	Regulation and control of myosin-I by the motor and light chain-binding domains. Trends in Cell Biology, 2013, 23, 81-89.	7.9	52
31	Method for Measuring Single-Molecule Adhesion Forces and Attachment Lifetimes of Protein–Membrane Interactions. Methods in Molecular Biology, 2013, 1046, 389-403.	0.9	8
32	Myosin IC generates power over a range of loads via a new tension-sensing mechanism. Proceedings of the United States of America, 2012, 109, E2433-40.	7.1	78
33	Kinetic Schemes for Post-Synchronized Single Molecule Dynamics. Biophysical Journal, 2012, 102, L23-L25.	0.5	24
34	Calcium Regulation of Myosin-I Tension Sensing. Biophysical Journal, 2012, 102, 2799-2807.	0.5	27
35	Membrane-Bound Myo1c Powers Asymmetric Motility of Actin Filaments. Current Biology, 2012, 22, 1688-1692.	3.9	58
36	Sites of Glucose Transporter-4 Vesicle Fusion with the Plasma Membrane Correlate Spatially with Microtubules. PLoS ONE, 2012, 7, e43662.	2.5	17

E MICHAEL OSTAP

#	Article	IF	CITATIONS
37	A Hearing Loss-Associated myo1c Mutation (R156W) Decreases the Myosin Duty Ratio and Force Sensitivity. Biochemistry, 2011, 50, 1831-1838.	2.5	33
38	Control of myosin-I force sensing by alternative splicing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 698-702.	7.1	37
39	Myosin 1G Is an Abundant Class I Myosin in Lymphocytes Whose Localization at the Plasma Membrane Depends on Its Ancient Divergent Pleckstrin Homology (PH) Domain (Myo1PH). Journal of Biological Chemistry, 2010, 285, 8675-8686.	3.4	58
40	Single-Molecule Adhesion Forces and Attachment Lifetimes of Myosin-I Phosphoinositide Interactions. Biophysical Journal, 2010, 99, 3916-3922.	0.5	12
41	Myo1e Binds Anionic Phospholipids with High Affinity. Biochemistry, 2010, 49, 9353-9360.	2.5	50
42	Kinetics of the Interaction of myo1c with Phosphoinositides. Journal of Biological Chemistry, 2009, 284, 28650-28659.	3.4	23
43	Chapter 6 Kinetic and Equilibrium Analysis of the Myosin ATPase. Methods in Enzymology, 2009, 455, 157-192.	1.0	136
44	Myosin I Can Act As a Molecular Force Sensor. Science, 2008, 321, 133-136.	12.6	210
45	Tropomyosins as Discriminators of Myosin Function. Advances in Experimental Medicine and Biology, 2008, 644, 273-282.	1.6	25
46	Calcium Regulation of Calmodulin Binding to and Dissociation from the Myo1c Regulatory Domain. Biochemistry, 2007, 46, 11718-11726.	2.5	34
47	CIB1 and CaBP1 bind to the myo1c regulatory domain. Journal of Muscle Research and Cell Motility, 2007, 28, 285-291.	2.0	26
48	Temperature Dependence of Nucleotide Association and Kinetic Characterization of Myo1bâ€. Biochemistry, 2006, 45, 11589-11597.	2.5	31
49	Myo1c Binds Phosphoinositides through a Putative Pleckstrin Homology Domain. Molecular Biology of the Cell, 2006, 17, 4856-4865.	2.1	130
50	Myo1c binds tightly and specifically to phosphatidylinositol 4,5-bisphosphate and inositol 1,4,5-trisphosphate. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 3118-3123.	7.1	105
51	Biochemical and Motile Properties of Myo1b Splice Isoforms. Journal of Biological Chemistry, 2005, 280, 41562-41567.	3.4	43
52	Relating biochemistry and function in the myosin superfamily. Current Opinion in Cell Biology, 2004, 16, 61-67.	5.4	256
53	Dynamic localization of myosin-I to endocytic structures inAcanthamoeba. Cytoskeleton, 2003, 54, 29-40.	4.4	36
54	Mechanism of Inhibition of Skeletal Muscle Actomyosin byN-Benzyl-p-toluenesulfonamideâ€. Biochemistry, 2003, 42, 6128-6135.	2.5	60

E MICHAEL OSTAP

#	ARTICLE	IF	CITATIONS
55	Dynamics of Myo1c (Myosin-Iβ) Lipid Binding and Dissociation. Journal of Biological Chemistry, 2002, 277, 42763-42768.	3.4	58
56	The Kinetic Mechanism of Myo1e (Human Myosin-IC). Journal of Biological Chemistry, 2002, 277, 21514-21521.	3.4	62
57	Kinetic Characterization of the Weak Binding States of Myosin Vâ€. Biochemistry, 2002, 41, 8508-8517.	2.5	75
58	Mechanism of Regulation ofAcanthamoebaMyosin-IC by Heavy-Chain Phosphorylationâ€. Biochemistry, 2002, 41, 12450-12456.	2.5	27
59	2,3-Butanedione monoxime (BDM) as a myosin inhibitor. Journal of Muscle Research and Cell Motility, 2002, 23, 305-308.	2.0	127
60	Kinetic Mechanism and Regulation of Myosin VI. Journal of Biological Chemistry, 2001, 276, 32373-32381.	3.4	218
61	Myosin-I nomenclature. Journal of Cell Biology, 2001, 155, 703-704.	5.2	71
62	ADP Inhibition of Myosin V ATPase Activity. Biophysical Journal, 2000, 79, 1524-1529.	0.5	134
63	Actin and Light Chain Isoform Dependence of Myosin V Kineticsâ€. Biochemistry, 2000, 39, 14196-14202.	2.5	87