Atle M Bones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7441571/publications.pdf

Version: 2024-02-01

		3	31976	30922
150	11,500		53	102
papers	citations		h-index	g-index
155	155		155	12550
all docs	docs citations		times ranked	citing authors

#	Article	IF	CITATIONS
1	Phytoalexins in defense against pathogens. Trends in Plant Science, 2012, 17, 73-90.	8.8	882
2	Plant molecular stress responses face climate change. Trends in Plant Science, 2010, 15, 664-674.	8.8	832
3	The myrosinaseâ€glucosinolate system, its organisation and biochemistry. Physiologia Plantarum, 1996, 97, 194-208.	5.2	567
4	The enzymic and chemically induced decomposition of glucosinolates. Phytochemistry, 2006, 67, 1053-1067.	2.9	485
5	Transcriptome Responses to Combinations of Stresses in Arabidopsis Â. Plant Physiology, 2013, 161, 1783-1794.	4.8	478
6	The myrosinase-glucosinolate system, its organisation and biochemistry. Physiologia Plantarum, 1996, 97, 194-208.	5.2	399
7	Phytochemicals of Brassicaceae in plant protection and human health – Influences of climate, environment and agronomic practice. Phytochemistry, 2011, 72, 538-556.	2.9	338
8	A CRISPR/Cas9 system adapted for gene editing in marine algae. Scientific Reports, 2016, 6, 24951.	3.3	324
9	Towards global understanding of plant defence against aphids – timing and dynamics of early <i>Arabidopsis</i> defence responses to cabbage aphid (<i>Brevicoryne brassicae</i>) attack. Plant, Cell and Environment, 2008, 31, 1097-1115.	5.7	264
10	Whole-cell response to nitrogen deprivation in the diatom <i>Phaeodactylum tricornutum</i> Journal of Experimental Botany, 2015, 66, 6281-6296.	4.8	230
11	An Integrated Analysis of Molecular Acclimation to High Light in the Marine Diatom Phaeodactylum tricornutum. PLoS ONE, 2009, 4, e7743.	2.5	219
12	The â€~mustard oil bomb': not so easy to assemble?! Localization, expression and distribution of the components of the myrosinase enzyme system. Phytochemistry Reviews, 2009, 8, 69-86.	6.5	214
13	Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. A review. Agronomy for Sustainable Development, 2010, 30, 311-348.	5.3	204
14	Pathways of Lipid Metabolism in Marine Algae, Co-Expression Network, Bottlenecks and Candidate Genes for Enhanced Production of EPA and DHA in Species of Chromista. Marine Drugs, 2013, 11, 4662-4697.	4.6	181
15	Horizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event?. FEMS Microbiology Reviews, 1998, 22, 79-103.	8.6	169
16	The cabbage aphid: a walking mustard oil bomb. Proceedings of the Royal Society B: Biological Sciences, 2007, 274, 2271-2277.	2.6	159
17	DNAqua-Net: Developing new genetic tools for bioassessment and monitoring of aquatic ecosystems in Europe. Research Ideas and Outcomes, 0, 2, e11321.	1.0	154
18	Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Journal of Experimental Botany, 2007, 58, 2537-2552.	4.8	141

#	Article	IF	Citations
19	Guard Cell- and Phloem Idioblast-Specific Expression of Thioglucoside Glucohydrolase 1 (Myrosinase) in Arabidopsis. Plant Physiology, 2002, 128, 1180-1188.	4.8	140
20	Nitrile-specifier Proteins Involved in Glucosinolate Hydrolysis in Arabidopsis thaliana. Journal of Biological Chemistry, 2009, 284, 12057-12070.	3.4	139
21	Gene Regulation of Carbon Fixation, Storage, and Utilization in the Diatom <i>Phaeodactylum tricornutum</i> Acclimated to Light/Dark Cycles Â. Plant Physiology, 2013, 161, 1034-1048.	4.8	138
22	Spatial organization of the glucosinolate–myrosinase system in brassica specialist aphids is similar to that of the host plant. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 187-191.	2.6	132
23	Genetic Structure and Evolution of RAC-GTPases in <i>Arabidopsis thaliana</i> . Genetics, 2000, 156, 1959-1971.	2.9	129
24	Sub-cellular immunolocalization of the glucosinolate sinigrin in seedlings of Brassica juncea. Planta, 1998, 206, 370-377.	3.2	128
25	<i>Arabidopsis</i> Class I KNOTTED-Like Homeobox Proteins Act Downstream in the IDA-HAE/HSL2 Floral Abscission Signaling Pathway. Plant Cell, 2011, 23, 2553-2567.	6.6	123
26	Cloning and characterization of rac-like cDNAs from Arabidopsis thaliana. Plant Molecular Biology, 1997, 35, 483-495.	3.9	122
27	Plant peptides in signalling: looking for new partners. Trends in Plant Science, 2009, 14, 255-263.	8.8	121
28	Purification and characterisation of epithiospecifier protein from Brassica napus: enzymic intramolecular sulphur addition within alkenyl thiohydroximates derived from alkenyl glucosinolate hydrolysis. FEBS Letters, 2000, 468, 243-246.	2.8	112
29	Molecular and Photosynthetic Responses to Prolonged Darkness and Subsequent Acclimation to Re-Illumination in the Diatom Phaeodactylum tricornutum. PLoS ONE, 2013, 8, e58722.	2.5	109
30	The effects of phosphorus limitation on carbon metabolism in diatoms. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160406.	4.0	101
31	NAPP and PIRP Encode Subunits of a Putative Wave Regulatory Protein Complex Involved in Plant Cell Morphogenesis. Plant Cell, 2004, 16, 2335-2349.	6.6	94
32	A RHOse by any other name: a comparative analysis of animal and plant Rho GTPases. Cell Research, 2006, 16, 435-445.	12.0	87
33	Cell Specific, Cross-Species Expression of Myrosinases in Brassica Napus, Arabidopsis Thaliana and Nicotiana Tabacum. Plant Molecular Biology, 2004, 54, 597-611.	3.9	83
34	Volatile profiling of Arabidopsis thaliana – Putative olfactory compounds in plant communication. Phytochemistry, 2005, 66, 1941-1955.	2.9	83
35	Purification and characterisation of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochemistry and Molecular Biology, 2001, 31, 1-5.	2.7	82
36	Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE, 2018, 13, e0193335.	2.5	77

#	Article	IF	Citations
37	A sex-inducing pheromone triggers cell cycle arrest and mate attraction in the diatom Seminavis robusta. Scientific Reports, 2016, 6, 19252.	3.3	76
38	The Essentials of Marine Biotechnology. Frontiers in Marine Science, 2021, 8, .	2.5	75
39	Mechanisms of Phosphorus Acquisition and Lipid Class Remodeling under P Limitation in a Marine Microalga. Plant Physiology, 2017, 175, 1543-1559.	4.8	74
40	Genome-scale cold stress response regulatory networks in ten Arabidopsis thalianaecotypes. BMC Genomics, 2013, 14, 722.	2.8	73
41	System Responses to Equal Doses of Photosynthetically Usable Radiation of Blue, Green, and Red Light in the Marine Diatom Phaeodactylum tricornutum. PLoS ONE, 2014, 9, e114211.	2.5	73
42	The <i>IDA/IDA-LIKE</i> and <i>PIP/PIP-LIKE</i> gene families in <i>Arabidopsis</i> phylogenetic relationship, expression patterns, and transcriptional effect of the PIPL3 peptide. Journal of Experimental Botany, 2015, 66, 5351-5365.	4.8	72
43	Characterisation of recombinant epithiospecifier protein and its over-expression in Arabidopsis thaliana. Phytochemistry, 2005, 66, 859-867.	2.9	69
44	Evaluation of possible horizontal gene transfer from transgenic plants to the soil bacterium Acinetobacter calcoaceticus BD413. Theoretical and Applied Genetics, 1997, 95, 815-821.	3.6	68
45	Immunogold-EM localization of myrosinase in Brassicaceae. Protoplasma, 1991, 161, 85-93.	2.1	67
46	Membrane-trafficking RabA4c involved in the effect of glycine betaine on recovery from chilling stress in Arabidopsis. Physiologia Plantarum, 2007, 130, 511-518.	5.2	67
47	Molecular Signatures in Arabidopsis thaliana in Response to Insect Attack and Bacterial Infection. PLoS ONE, 2013, 8, e58987.	2.5	67
48	The myrosinase (thioglucoside glucohydrolase) gene family in Brassicaceae. Plant Molecular Biology, 1993, 23, 511-524.	3.9	65
49	Transgene-free genome editing in marine algae by bacterial conjugation – comparison with biolistic CRISPR/Cas9 transformation. Scientific Reports, 2018, 8, 14401.	3.3	63
50	Transcriptional regulatory networks in <i>Arabidopsis thaliana</i> during single and combined stresses. Nucleic Acids Research, 2016, 44, 3147-3164.	14.5	62
51	Multidimensional approaches for studying plant defence against insects: from ecology to omics and synthetic biology. Journal of Experimental Botany, 2015, 66, 479-493.	4.8	60
52	Crystal structure at $1.1\tilde{A}$ resolution of an insect myrosinase from Brevicoryne brassicae shows its close relationship to $\hat{1}^2$ -glucosidases. Insect Biochemistry and Molecular Biology, 2005, 35, 1311-1320.	2.7	58
53	Testing the importance of jasmonate signalling in induction of plant defences upon cabbage aphid (Brevicoryne brassicae) attack. BMC Genomics, 2011, 12, 423.	2.8	57
54	The Seminavis robusta genome provides insights into the evolutionary adaptations of benthic diatoms. Nature Communications, 2020, 11, 3320.	12.8	55

#	Article	IF	Citations
55	Characterization and evolution of a myrosinase from the cabbage aphid Brevicoryne brassicae. Insect Biochemistry and Molecular Biology, 2002, 32, 275-284.	2.7	54
56	Genome editing in diatoms: achievements and goals. Plant Cell Reports, 2018, 37, 1401-1408.	5.6	54
57	Purification, Characterization and Partial Amino Acid Sequencing of \hat{l}^2 -thioglucosidase from Brassica napus L Journal of Plant Physiology, 1989, 134, 722-729.	3.5	53
58	ROS Signaling Pathways in Chilling Stress. Plant Signaling and Behavior, 2007, 2, 365-367.	2.4	53
59	The small GTPase AtRAC2/ROP7 is specifically expressed during late stages of xylem differentiation in Arabidopsis. Journal of Experimental Botany, 2005, 56, 2465-2476.	4.8	52
60	Genome-Wide Profiling of Responses to Cadmium in the Diatom <i>Phaeodactylum tricornutum</i> Environmental Science & Diatom (1) Application (2011)	10.0	50
61	bHLH-PAS protein RITMO1 regulates diel biological rhythms in the marine diatom <i>Phaeodactylum tricornutum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 13137-13142.	7.1	49
62	Distribution of \hat{l}^2 -Thioglucosidase Activity in Intact Plants, Cell and Tissue 6Brassica napus L Journal of Experimental Botany, 1990, 41, 737-744.	4.8	47
63	Horizontal gene transfer from transgenic plants to terrestrial bacteria – a rare event?. FEMS Microbiology Reviews, 1998, 22, 79-103.	8.6	47
64	Allyl isothiocyanate depletes glutathione and upregulates expression of glutathione S-transferases in Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 277.	3.6	47
65	Fate of Myrosin Cells: Characterization of Monoclonal Antibodies Against Myrosinase. Journal of Experimental Botany, 1991, 42, 1541-1550.	4.8	46
66	Disintegration of microtubules in Arabidopsis thaliana and bladder cancer cells by isothiocyanates. Frontiers in Plant Science, 2015, 6, 6.	3.6	46
67	Genome scale transcriptional response diversity among ten ecotypes of Arabidopsis thaliana during heat stress. Frontiers in Plant Science, 2013, 4, 532.	3.6	43
68	The chloroplast genome of the diatom Seminavis robusta: New features introduced through multiple mechanisms of horizontal gene transfer. Marine Genomics, 2014, 16, 17-27.	1.1	43
69	Metabolite profiling reveals novel multi-level cold responses in the diploid model Fragaria vesca (woodland strawberry). Phytochemistry, 2012, 77, 99-109.	2.9	39
70	NEVERSHED and INFLORESCENCE DEFICIENT IN ABSCISSION are differentially required for cell expansion and cell separation during floral organ abscission in Arabidopsis thaliana. Journal of Experimental Botany, 2013, 64, 5345-5357.	4.8	39
71	Arabidopsis cDNA Sequence Encoding Myrosinase. Plant Physiology, 1993, 103, 671-672.	4.8	38
72	Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: Dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions. Phytochemistry, 2012, 84, 7-17.	2.9	38

#	Article	IF	Citations
73	The Mybâ€like transcription factor phosphorus starvation response (PtPSR) controls conditional P acquisition and remodelling in marine microalgae. New Phytologist, 2020, 225, 2380-2395.	7.3	38
74	Transcriptional profiling of an Fd-GOGAT1/GLU1 mutant in Arabidopsis thaliana reveals a multiple stress response and extensive reprogramming of the transcriptome. BMC Genomics, 2010, 11, 190.	2.8	36
75	The IDA-LIKE peptides IDL6 and IDL7 are negative modulators of stress responses in Arabidopsis thaliana. Journal of Experimental Botany, 2017, 68, 3557-3571.	4.8	34
76	Glucosinolate-Derived Isothiocyanates Inhibit Arabidopsis Growth and the Potency Depends on Their Side Chain Structure. International Journal of Molecular Sciences, 2017, 18, 2372.	4.1	34
77	Understanding sample size: what determines the required number of microarrays for an experiment?. Trends in Plant Science, 2007, 12, 46-50.	8.8	33
78	The FRO2 ferric reductase is required for glycine betaine's effect on chilling tolerance in <i>Arabidopsis</i> roots. Physiologia Plantarum, 2008, 134, 334-341.	5.2	33
79	Rearing Water Treatment Induces Microbial Selection Influencing the Microbiota and Pathogen Associated Transcripts of Cod (Gadus morhua) Larvae. Frontiers in Microbiology, 2018, 9, 851.	3.5	33
80	Purification and characterization of a nitrilase from Brassica napus. Physiologia Plantarum, 1993, 89, 811-816.	5.2	32
81	Allyl-isothiocyanate treatment induces a complex transcriptional reprogramming including heat stress, oxidative stress and plant defence responses in Arabidopsis thaliana. BMC Genomics, 2016, 17, 740.	2.8	32
82	The crystal structure of Arabidopsis thaliana RAC7/ROP9: The first RAS superfamily GTPase from the plant kingdom. Phytochemistry, 2006, 67, 2332-2340.	2.9	31
83	The synthesis and enzymic hydrolysis of (E)-2-[2,3-2H2]propenyl glucosinolate: Confirmation of the rearrangement of the thiohydroximate moiety. Phytochemistry, 2007, 68, 1384-1390.	2.9	31
84	Removing the mustard oil bomb from seeds: transgenic ablation of myrosin cells in oilseed rape (Brassica napus) produces MINELESS seeds. Journal of Experimental Botany, 2010, 61, 1683-1697.	4.8	29
85	Ecotype dependent expression and alternative splicing of epithiospecifier protein (ESP) in Arabidopsis thaliana. Plant Molecular Biology, 2012, 78, 361-375.	3.9	28
86	Effect of growth temperature on glucosinolate profiles in Arabidopsis thaliana accessions. Phytochemistry, 2016, 130, 106-118.	2.9	27
87	Dynamic responses to silicon in Thalasiossira pseudonana - Identification, characterisation and classification of signature genes and their corresponding protein motifs. Scientific Reports, 2017, 7, 4865.	3.3	27
88	PAMP-INDUCED SECRETED PEPTIDE 3 (PIP3) modulates immunity in Arabidopsis thaliana. Journal of Experimental Botany, 2020, 71, 850-864.	4.8	27
89	CRISPR/Cas9-mediated editing of \hat{l} "5 and \hat{l} "6 desaturases impairs \hat{l} "8-desaturation and docosahexaenoic acid synthesis in Atlantic salmon (Salmo salar L.). Scientific Reports, 2019, 9, 16888.	3.3	25
90	Loss of ALBINO3b Insertase Results in Truncated Light-Harvesting Antenna in Diatoms. Plant Physiology, 2019, 181, 1257-1276.	4.8	25

#	Article	lF	Citations
91	Sulphate can induce differential expression of thioglucoside glucohydrolases (myrosinases). Planta, 1994, 193, 558-566.	3.2	22
92	A New Network for the Advancement of Marine Biotechnology in Europe and Beyond. Frontiers in Marine Science, 2020, 7, .	2.5	22
93	The RopGEF2-ROP7/ROP2 Pathway Activated by phyB Suppresses Red Light-Induced Stomatal Opening. Plant Physiology, 2017, 174, 717-731.	4.8	21
94	<i>AtMBD8</i> is involved in control of flowering time in the C24 ecotype of <i>Arabidopsis thaliana</i> . Physiologia Plantarum, 2009, 136, 110-126.	5.2	20
95	CRISPR/Cas9 Gene Editing in the Marine Diatom Phaeodactylum tricornutum. Bio-protocol, 2017, 7, e2442.	0.4	20
96	Arabidopsis thaliana MIRO1 and MIRO2 GTPases Are Unequally Redundant in Pollen Tube Growth and Fusion of Polar Nuclei during Female Gametogenesis. PLoS ONE, 2011, 6, e18530.	2.5	19
97	Benzyl Cyanide Leads to Auxin-Like Effects Through the Action of Nitrilases in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 1240.	3.6	19
98	Arabidopsis mutants impaired in glutathione biosynthesis exhibit higher sensitivity towards the glucosinolate hydrolysis product allyl-isothiocyanate. Scientific Reports, 2018, 8, 9809.	3.3	19
99	The Role of a Glucosinolate-Derived Nitrile in Plant Immune Responses. Frontiers in Plant Science, 2020, 11, 257.	3.6	19
100	Simultaneous knockout of multiple <i>LHCF</i> genes using single sgRNAs and engineering of a highâ€fidelity Cas9 for precise genome editing in marine algae. Plant Biotechnology Journal, 2021, 19, 1658-1669.	8. 3	19
101	Quantification of Gemcitabine Incorporation into Human DNA by LC/MS/MS as a Surrogate Measure for Target Engagement. Analytical Chemistry, 2010, 82, 6576-6583.	6.5	18
102	Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Applied Microbiology and Biotechnology, 2017, 101, 5749-5763.	3.6	18
103	Integrative "omic―analysis reveals distinctive cold responses in leaves and roots of strawberry, Fragaria × ananassa †Korona'. Frontiers in Plant Science, 2015, 6, 826.	3.6	17
104	Metabolism of [\hat{l} ±-14C]-Desulphophenethylglucosinolate in Nasturtium officinale. Phytochemistry, 1997, 44, 1251-1255.	2.9	16
105	Microautoradiographic localisation of a glucosinolate precursor to specific cells in Brassica napus L. embryos indicates a separate transport pathway into myrosin cells. Planta, 2001, 213, 207-213.	3.2	16
106	Oilseed rape seeds with ablated defence cells of the glucosinolate–myrosinase system. Production and characteristics of double haploid MINELESS plants of Brassica napus L Journal of Experimental Botany, 2011, 62, 4975-4993.	4.8	16
107	Plant defence responses in oilseed rape MINELESS plants after attack by the cabbage moth Mamestra brassicae. Journal of Experimental Botany, 2015, 66, 579-592.	4.8	16
108	Arabidopsis myrosinases link the glucosinolate-myrosinase system and the cuticle. Scientific Reports, 2016, 6, 38990.	3.3	16

#	Article	IF	Citations
109	Tools for biotechnological studies of the freshwater alga Nannochloropsis limnetica: antibiotic resistance and protoplast production. Journal of Applied Phycology, 2017, 29, 853-863.	2.8	16
110	Sulphate and micronutrients can modulate the expression levels of myrosinases in Sinapis alba plants. Physiologia Plantarum, 1998, 104, 30-37.	5.2	15
111	Anchoring plant metallothioneins to the inner face of the plasma membrane of Saccharomyces cerevisiae cells leads to heavy metal accumulation. PLoS ONE, 2017, 12, e0178393.	2.5	15
112	Allyl isothiocyanate affects the cell cycle of Arabidopsis thaliana. Frontiers in Plant Science, 2015, 6, 364.	3.6	14
113	Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana. Frontiers in Plant Science, 2017, 8, 233.	3.6	14
114	Comparative transcriptomics reveals domesticationâ€associated features of Atlantic salmon lipid metabolism. Molecular Ecology, 2020, 29, 1860-1872.	3.9	14
115	Expression and occurrence of uracil-DNA glycosylase in higher plants. Physiologia Plantarum, 1993, 88, 682-688.	5.2	13
116	Chapter six A novel myrosinase-glucosinolate defense system in, cruciferous specialist aphids. Recent Advances in Phytochemistry, 2003, 37, 127-142.	0.5	12
117	A mixture model approach to sample size estimation in two-sample comparative microarray experiments. BMC Bioinformatics, 2008, 9, 117.	2.6	12
118	Gene regulation of lipid and phospholipid metabolism in Atlantic cod (Gadus morhua) larvae. Comparative Biochemistry and Physiology - B Biochemistry and Molecular Biology, 2015, 190, 16-26.	1.6	12
119	Light Regulation of LHCX Genes in the Benthic Diatom Seminavis robusta. Frontiers in Marine Science, 2020, 7, .	2.5	12
120	†Myrosin cells' are not a prerequisite for aphid feeding on oilseed rape (<i>Brassica napus</i>) but affect host plant preferences. Plant Biology, 2012, 14, 894-904.	3.8	11
121	Differential Effects of Dietary Supplementation of Krill Meal, Soybean Meal, Butyrate, and Bactocell® on the Gene Expression of Atlantic Salmon Head Kidney. International Journal of Molecular Sciences, 2020, 21, 886.	4.1	11
122	Allyl Isothiocyanate Inhibits Actin-Dependent Intracellular Transport in Arabidopsis thaliana. International Journal of Molecular Sciences, 2015, 16, 29134-29147.	4.1	10
123	Editorial: Physiology and Cellular Mechanisms of Isothiocyanates and Other Glucosinolate Degradation Products in Plants. Frontiers in Plant Science, 2015, 6, 1105.	3.6	10
124	Accumulation of Ag(I) by Saccharomyces cerevisiae Cells Expressing Plant Metallothioneins. Cells, 2018, 7, 266.	4.1	10
125	Systems Biology: A Promising Tool to Study Abiotic Stress Responses. , 2011, , 163-172.		10
126	Molecular Identification and Pathological Characteristics of NPV Isolated from Spodoptera litura (Fabricius) in Pakistan. Pakistan Journal of Zoology, 2018, 50, .	0.2	9

#	Article	IF	Citations
127	Defence Mechanisms of Brassicaceae: Implications for Plant-Insect Interactions and Potential for Integrated Pest Management., 2011,, 623-670.		8
128	Naturally occurring phenethyl isothiocyanateâ€induced inhibition of gastric cancer cell growth by disruption of microtubules. Journal of Gastroenterology and Hepatology (Australia), 2014, 29, 99-106.	2.8	8
129	Genome wide transcriptional profiling of acclimation to photoperiod in high-latitude accessions of Arabidopsis thaliana. Plant Science, 2012, 185-186, 143-155.	3.6	7
130	Chemopreventive Effects of Dietary Isothiocyanates in Animal Models of Gastric Cancer and Synergistic Anticancer Effects With Cisplatin in Human Gastric Cancer Cells. Frontiers in Pharmacology, 2021, 12, 613458.	3.5	7
131	Principles and Methods of Counteracting Harmful Salmon–Arthropod Interactions in Salmon Farming: Addressing Possibilities, Limitations, and Future Options. Frontiers in Marine Science, 2021, 8, .	2.5	7
132	Catching the WAVEs of Plant Actin Regulation. Journal of Plant Growth Regulation, 2005, 24, 55-66.	5.1	6
133	Adaptation response of Arabidopsis thaliana to random positioning. Advances in Space Research, 2013, 52, 1320-1331.	2.6	6
134	Nonlinear State Estimation in the Czochralski Process. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 4891-4896.	0.4	6
135	Dietary fatty acid source has little effect on the development of the immune system in the pyloric caeca of Atlantic salmon fry. Scientific Reports, 2019, 9, 27.	3.3	6
136	The Imaging of Guard Cells of thioglucosidase (tgg) Mutants of Arabidopsis Further Links Plant Chemical Defence Systems with Physical Defence Barriers. Cells, 2021, 10, 227.	4.1	6
137	Systems Biology: A Promising Tool to Study Abiotic Stress Responses. , 2011, , 163-172.		6
138	Functional studies of CpSRP54 in diatoms show that the mechanism of thylakoid protein insertion differs from that in plants and green algae. Plant Journal, 2021, 106, 113-132.	5.7	5
139	Expression and occurrence of uracil-DNA glycosylase in higher plants. Physiologia Plantarum, 1993, 88, 682-688.	5.2	5
140	Sub-lethal Dose Reponses of Native Polyhydroviruses and Spinosad for Economical and Sustainable Management of Spodoptera litura in Pakistan. Pakistan Journal of Zoology, 2020, 52, .	0.2	5
141	A Bayesian Hierarchical Model for Quantitative Real-Time PCR Data. Statistical Applications in Genetics and Molecular Biology, 2010, 9, Article 3.	0.6	4
142	Genome-wide gene expression profiles in response to plastid division perturbations. Planta, 2011, 234, 1055-1063.	3.2	4
143	Purification and characterization of a nitrilase from Brassica napus. Physiologia Plantarum, 1993, 89, 811-816.	5.2	4
144	Phenylalanine Hydroxylase RNAi Knockdown Negatively Affects Larval Development, Molting and Swimming Performance of Salmon Lice. Frontiers in Marine Science, 2020, 7, .	2.5	3

#	ARTICLE	IF	CITATIONS
145	Assessment of oxidative stress response genes in Avicennia marina exposed to oil contamination – Polyphenol oxidase (PPOA) as a biomarker. Biotechnology Reports (Amsterdam, Netherlands), 2020, 28, e00565.	4.4	3
146	Ilbâ€RADâ€sequencing coupled with random forest classification indicates regional population structuring and sexâ€specific differentiation in salmon lice (⟨i⟩Lepeophtheirus salmonis⟨/i⟩). Ecology and Evolution, 2022, 12, e8809.	1.9	2
147	Sa1964 Gastric Cancer Chemoprevention by Phenethyl Isothiocyanate-Containing Diet in Chemically – but Not Genetically – Induced Gastric Cancer in Mice. Gastroenterology, 2014, 146, S-341.	1.3	1
148	Unique photosynthetic electron transport tuning and excitation distribution in heterokont algae. PLoS ONE, 2019, 14, e0209920.	2.5	1
149	Monoclonal antibodies against myrosinase in brassica. Ultramicroscopy, 1988, 24, 68.	1.9	O
150	Performance of transgenic plants of potato (Solanum tuberosumcv. Laila) grownin vitroin greenhouse and in a field trial. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 1997, 47, 156-167.	0.6	0