
Akula Venkatram

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7441265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Isotopic Signatures of Methane Emissions From Dairy Farms in California's San Joaquin Valley. Journal of Geophysical Research G: Biogeosciences, 2022, 127, .	3.0	3
2	Observations and parameterization of the effects of barrier height and source-to-barrier distance on concentrations downwind of a roadway. Atmospheric Pollution Research, 2022, 13, 101385.	3.8	1
3	Improving spatial resolution of PM2.5 measurements during wildfires. Atmospheric Pollution Research, 2021, 12, 101047.	3.8	3
4	Modeling turbulent transport of aerosols inside rooms using eddy diffusivity. Indoor Air, 2021, 31, 1886-1895.	4.3	14
5	Uncertainty in using dispersion models to estimate methane emissions from manure lagoons in dairies. Agricultural and Forest Meteorology, 2020, 290, 108011.	4.8	11
6	Spatial Particulate Fields during High Winds in the Imperial Valley, California. Atmosphere, 2020, 11, 88.	2.3	3
7	Using Low-Cost Air Quality Sensor Networks to Improve the Spatial and Temporal Resolution of Concentration Maps. International Journal of Environmental Research and Public Health, 2019, 16, 1252.	2.6	27
8	A new bottom-up emissions estimation approach for aircraft sources in support of air quality modelling for community-scale assessments around airports. International Journal of Environment and Pollution, 2019, 65, 43.	0.2	2
9	The effects of roadside vegetation characteristics on local, near-road air quality. Air Quality, Atmosphere and Health, 2019, 12, 259-270.	3.3	60
10	The effects of roadside vegetation characteristics on local, near-road air quality. Air Quality, Atmosphere and Health, 2019, 12, 259-270.	3.3	4
11	Modeling dispersion of emissions from depressed roadways. Atmospheric Environment, 2018, 186, 189-197.	4.1	10
12	The Impact of Highways on Urban Air Quality. , 2018, , 77-104.		0
13	Modeling Dispersion at City Scale. , 2018, , 139-146.		1
14	Reduction of air pollution levels downwind of a road with an upwind noise barrier. Atmospheric Environment, 2017, 155, 1-10.	4.1	20
15	Evaluation and development of tools to quantify the impacts of roadside vegetation barriers on near-road air quality. International Journal of Environment and Pollution, 2017, 62, 127.	0.2	4
16	Using models to interpret the impact of roadside barriers on near-road air quality. Atmospheric Environment, 2016, 138, 55-64.	4.1	14
17	The ratio of effective building height to street width governs dispersion of local vehicle emissions. Atmospheric Environment, 2015, 112, 54-63.	4.1	12
18	Effects of solid barriers on dispersion of roadway emissions. Atmospheric Environment, 2014, 97, 286-295.	4.1	39

AKULA VENKATRAM

#	Article	IF	CITATIONS
19	A computationally efficient model for estimating background concentrations of NOx, NO2, and O3. Environmental Modelling and Software, 2014, 52, 19-37.	4.5	11
20	RLINE: A line source dispersion model for near-surface releases. Atmospheric Environment, 2013, 77, 748-756.	4.1	146
21	Re-formulation of plume spread for near-surface dispersion. Atmospheric Environment, 2013, 77, 846-855.	4.1	66
22	Rise of Buoyant Emissions from Low-Level Sources in the Presence of Upstream and Downstream Obstacles. Boundary-Layer Meteorology, 2012, 144, 287-308.	2.3	6
23	Estimating the height of the nocturnal urban boundary layer for dispersion applications. Atmospheric Environment, 2012, 54, 611-623.	4.1	22
24	Scaling of building affected plume rise and dispersion in water channels and wind tunnels—Revisit of an old problem. Journal of Wind Engineering and Industrial Aerodynamics, 2012, 103, 16-30.	3.9	23
25	The relative impacts of distributed and centralized generation of electricity on local air quality in the South Coast Air Basin of California. Energy Policy, 2011, 39, 4999-5007.	8.8	6
26	Performance of Steady-State Dispersion Models Under Low Wind-Speed Conditions. Boundary-Layer Meteorology, 2011, 138, 475-491.	2.3	37
27	Using Temperature Fluctuation Measurements to Estimate Meteorological Inputs for Modelling Dispersion During Convective Conditions in Urban Areas. Boundary-Layer Meteorology, 2010, 135, 269-289.	2.3	6
28	Using measurements in urban areas to estimate turbulent velocities for modeling dispersion. Atmospheric Environment, 2008, 42, 3833-3841.	4.1	14
29	New Directions: The future modelling requirements to inform policy and legislation of urban air abatement. Atmospheric Environment, 2008, 42, 3906-3907.	4.1	0
30	Computing and displaying model performance statistics. Atmospheric Environment, 2008, 42, 6862-6868.	4.1	23
31	On the role of nighttime meteorology in modeling dispersion of near surface emissions in urban areas. Atmospheric Environment, 2007, 41, 692-704.	4.1	9
32	Evaluating the use of outputs from comprehensive meteorological models in air quality modeling applications. Atmospheric Environment, 2007, 41, 1689-1705.	4.1	18
33	Estimating micrometeorological inputs for modeling dispersion in urban areas during stable conditions. Atmospheric Environment, 2007, 41, 5345-5356.	4.1	10
34	Analysis of air quality data near roadways using a dispersion model. Atmospheric Environment, 2007, 41, 9481-9497.	4.1	42
35	Resolving Neighborhood Scale in Air Toxics Modeling: A Case Study in Wilmington, CA. Journal of the Air and Waste Management Association, 2006, 56, 559-568.	1.9	11
36	Dispersion from ground-level sources in a shoreline urban area. Atmospheric Environment, 2006, 40, 1361-1372.	4.1	7

Akula Venkatram

#	Article	IF	CITATIONS
37	Approximating dispersion from a finite line source. Atmospheric Environment, 2006, 40, 2401-2408.	4.1	55
38	On relationships between urban and rural near-surface meteorology for diffusion applications. Atmospheric Environment, 2006, 40, 6541-6553.	4.1	19
39	Relating plume spread to meteorology in urban areas. Atmospheric Environment, 2005, 39, 371-380.	4.1	23
40	An examination of the urban dispersion curves derived from the St. Louis dispersion study. Atmospheric Environment, 2005, 39, 3813-3822.	4.1	4
41	Dispersion within a model urban area. Atmospheric Environment, 2005, 39, 4729-4743.	4.1	4
42	AERMOD: A Dispersion Model for Industrial Source Applications. Part II: Model Performance against 17 Field Study Databases. Journal of Applied Meteorology and Climatology, 2005, 44, 694-708.	1.7	168
43	AERMOD: A Dispersion Model for Industrial Source Applications. Part I: General Model Formulation and Boundary Layer Characterization. Journal of Applied Meteorology and Climatology, 2005, 44, 682-693.	1.7	444
44	On estimating emissions through horizontal fluxes. Atmospheric Environment, 2004, 38, 1337-1344.	4.1	13
45	The role of meteorological inputs in estimating dispersion from surface releases. Atmospheric Environment, 2004, 38, 2439-2446.	4.1	18
46	The analysis of data from an urban dispersion experiment. Atmospheric Environment, 2004, 38, 3647-3659.	4.1	27
47	Modeling dispersion at distances of meters from urban sources. Atmospheric Environment, 2004, 38, 4633-4641.	4.1	73
48	Accounting for averaging time in air pollution modeling. Atmospheric Environment, 2002, 36, 2165-2170.	4.1	20
49	A complex terrain dispersion model for regulatory applications. Atmospheric Environment, 2001, 35, 4211-4221.	4.1	42
50	A critique of empirical emission factor models: a case study of the AP-42 model for estimating PM10 emissions from paved roads. Atmospheric Environment, 2000, 34, 1-11.	4.1	62
51	Using a dispersion model to estimate emission rates of particulate matter from paved roads. Atmospheric Environment, 1999, 33, 1093-1102.	4.1	48
52	An analysis of the asymptotic behavior of cross-wind-integrated ground-level concentrations using Lagrangian stochastic simulation. Atmospheric Environment, 1997, 31, 1467-1476.	4.1	12
53	An examination of the Pasquill-Gifford-Turner dispersion scheme. Atmospheric Environment, 1996, 30, 1283-1290.	4.1	42
54	Vertical dispersion of ground-level releases in the surface boundary layer. Atmospheric Environment Part A General Topics, 1992, 26, 947-949.	1.3	34

AKULA VENKATRAM

#	Article	IF	CITATIONS
55	On the use of kriging in the spatial analysis of acid precipitation data. Atmospheric Environment, 1988, 22, 1963-1975.	1.0	49
56	Inherent uncertainty in air quality modeling. Atmospheric Environment, 1988, 22, 1221-1227.	1.0	18
57	The uncertainty in estimating dispersion in the convective boundary layer. Atmospheric Environment, 1984, 18, 307-310.	1.0	13
58	A framework for evaluating air quality models. Boundary-Layer Meteorology, 1982, 24, 371-385.	2.3	21
59	A field study to estimate the impact of noise barriers on mitigation of near road air pollution. Air Quality, Atmosphere and Health, 0, , 1.	3.3	2