

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7441009/publications.pdf Version: 2024-02-01

XIN YU

#	Article	IF	CITATIONS
1	Effects of scandium chloride on osteogenic and adipogenic differentiation of mesenchymal stem cells. Journal of Rare Earths, 2022, 40, 161-168.	4.8	2
2	Ferromagnetic coupling in a two-dimensional Cairo pentagonal Ni2(TCNQ)2 lattice. Journal of Materiomics, 2022, 8, 627-632.	5.7	1
3	Plasmonâ€Enhanced Photocatalytic Activity of Organic Heterostructure for Indoorâ€Light Antibacterial Therapy. Advanced Therapeutics, 2022, 5, .	3.2	6
4	Surface Reconstruction on Uniform Cu Nanodisks Boosted Electrochemical Nitrate Reduction to Ammonia. , 2022, 4, 650-656.		42
5	Stem Cell Membraneâ€Encapsulated Zeolitic Imidazolate Frameworkâ€8: A Targeted Nanoâ€Platform for Osteogenic Differentiation. Small, 2022, 18, .	10.0	12
6	Photoelectrochemical Clothianidin Detection Based on a WO ₃ /CdS Heterostructure Coated with a Molecularly Imprinted Thin Film. Analysis & Sensing, 2022, 2, .	2.0	2
7	Heterojunction of Vertically Arrayed MoS ₂ Nanosheet/N-Doped Reduced Graphene Oxide Enabling a Nanozyme for Sensitive Biomolecule Monitoring. Analytical Chemistry, 2021, 93, 11123-11132.	6.5	52
8	Full Solar‧pectrumâ€Ðriven Antibacterial Therapy over Hierarchical Sn ₃ O ₄ /PDINH with Enhanced Photocatalytic Activity. Small, 2021, 17, e2102744.	10.0	64
9	Creating a bipolar electrode system for electrochemical advanced oxidative processes with efficient electricity consumption. Journal of Environmental Chemical Engineering, 2021, 9, 105694.	6.7	6
10	A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascade atalytic Tumor Therapy. Angewandte Chemie, 2021, 133, 25532-25542.	2.0	8
11	A Titanium Nitride Nanozyme for pHâ€Responsive and Irradiationâ€Enhanced Cascadeâ€Catalytic Tumor Therapy. Angewandte Chemie - International Edition, 2021, 60, 25328-25338.	13.8	88
12	Sn/Sn3O4â^'x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance. International Journal of Minerals, Metallurgy and Materials, 2021, 28, 150-159.	4.9	22
13	Cellâ€Tractionâ€Triggered Onâ€Demand Electrical Stimulation for Neuron‣ike Differentiation. Advanced Materials, 2021, 33, e2106317.	21.0	49
14	Microflowers Comprised of Cu/Cu _{<i>x</i>} O/NC Nanosheets as Electrocatalysts and Horseradish Peroxidase Mimics. ACS Applied Nano Materials, 2020, 3, 617-623.	5.0	30
15	Ligand-free upconversion nanoparticles for cell labeling and their effects on stem cell differentiation. Nanotechnology, 2020, 31, 145101.	2.6	15
16	Visible light active and noble metal free Nb4N5/TiO2 nanobelt surface heterostructure for plasmonic enhanced solar water splitting. Chemical Engineering Journal, 2020, 402, 126226.	12.7	27
17	Serendipity for Topological Insulator as Multifunctional Electrocatalyst. ACS Applied Energy Materials, 2020, 3, 8929-8936.	5.1	5
18	Defectâ€Rich Adhesive Molybdenum Disulfide/rGO Vertical Heterostructures with Enhanced Nanozyme Activity for Smart Bacterial Killing Application. Advanced Materials, 2020, 32, e2005423.	21.0	207

Xin Yu

#	Article	IF	CITATIONS
19	A Microorganism Bred TiO ₂ /Au/TiO ₂ Heterostructure for Whispering Gallery Mode Resonance Assisted Plasmonic Photocatalysis. ACS Nano, 2020, 14, 13876-13885.	14.6	54
20	Crystalline Ni-Doped Sn ₃ O ₄ Nanosheets for Photocatalytic H ₂ Production. ACS Applied Nano Materials, 2020, 3, 9268-9275.	5.0	22
21	Enhanced Antibacterial Photocatalytic Activity of Porous Few-Layer C ₃ N ₄ . Journal of Nanoscience and Nanotechnology, 2020, 20, 5944-5950.	0.9	4
22	Synergy between nanozymes and natural enzymes on the hybrid MoS2 nanosheets/graphite microfiber for enhanced voltammetric determination of hydrogen peroxide. Mikrochimica Acta, 2020, 187, 321.	5.0	22
23	Degradation of polyvinyl chloride microplastics via an electro-Fenton-like system with a TiO2/graphite cathode. Journal of Hazardous Materials, 2020, 399, 123023.	12.4	194
24	TiO2 electrocatalysis via three-electron oxygen reduction for highly efficient generation of hydroxyl radicals. Electrochemistry Communications, 2020, 113, 106687.	4.7	28
25	Piezopotential augmented photo- and photoelectro-catalysis with a built-in electric field. Chinese Journal of Catalysis, 2020, 41, 534-549.	14.0	75
26	NaGdF4:Yb/Er nanoparticles of different sizes for tracking mesenchymal stem cells and their effects on cell differentiation. Materials Science and Engineering C, 2020, 111, 110827.	7.3	11
27	Band structure engineering of bioinspired Fe doped SrMoO4 for enhanced photocatalytic nitrogen reduction performance. Nano Energy, 2019, 66, 104187.	16.0	71
28	Piezoelectricâ€Effectâ€Enhanced Fullâ€Spectrum Photoelectrocatalysis in p–n Heterojunction. Advanced Functional Materials, 2019, 29, 1807279.	14.9	147
29	An Allâ€Organic Semiconductor C ₃ N ₄ /PDINH Heterostructure with Advanced Antibacterial Photocatalytic Therapy Activity. Advanced Materials, 2019, 31, e1901965.	21.0	215
30	Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance. Applied Catalysis B: Environmental, 2019, 256, 117798.	20.2	45
31	Electrochemical detection of DNA hybridization based on three-dimensional ZnO nanowires/graphite hybrid microfiber structure. Bioelectrochemistry, 2019, 128, 126-132.	4.6	22
32	Efficiently degradation of polyacrylamide pollution using a full spectrum Sn3O4 nanosheet/Ni foam heterostructure photoelectrocatalyst. Catalysis Today, 2019, 335, 520-526.	4.4	26
33	Electrochemical detection of adenine and guanine using a three-dimensional WS2 nanosheet/graphite microfiber hybrid electrode. Electrochemistry Communications, 2019, 99, 75-80.	4.7	34
34	Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for efficient photocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2018, 227, 470-476.	20.2	86
35	Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy, 2018, 46, 29-38.	16.0	132
36	Nanostructured molybdenum disulfide biointerface for adhesion and osteogenic differentiation of mesenchymal stem cells. Applied Materials Today, 2018, 10, 164-172.	4.3	37

Xin Yu

#	Article	IF	CITATIONS
37	Killing two birds with one stone: To eliminate the toxicity and enhance the photocatalytic property of CdS nanobelts by assembling ultrafine TiO2 nanowires on them. Solar Energy Materials and Solar Cells, 2018, 183, 41-47.	6.2	50
38	An In Situ Polymerizationâ€Encapsulation Approach to Prepare TiO ₂ –Graphite Carbon–Au Photocatalysts for Efficient Photocatalysis. Particle and Particle Systems Characterization, 2018, 35, 1700297.	2.3	6
39	Top or Bottom, Assembling Modules Determine the Photocatalytic Property of the Sheetlike Nanostructured Hybrid Photocatalyst Composed with Sn ₃ O ₄ and rGO (GQD). ACS Sustainable Chemistry and Engineering, 2018, 6, 11775-11782.	6.7	37
40	TiO ₂ /TiN core/shell nanobelts for efficient solar hydrogen generation. Chemical Communications, 2018, 54, 6056-6059.	4.1	30
41	High-performance wearable supercapacitors fabricated with surface activated continuous filament graphite fibers. Journal of Power Sources, 2017, 358, 13-21.	7.8	22
42	A Nanostructured Molybdenum Disulfide Film for Promoting Neural Stem Cell Neuronal Differentiation: toward a Nerve Tissueâ€Engineered 3D Scaffold. Advanced Biology, 2017, 1, e1600042.	3.0	45
43	Static pressure-induced neural differentiation of mesenchymal stem cells. Nanoscale, 2017, 9, 10031-10037.	5.6	9
44	Structural effect of Fe3O4 nanoparticles on peroxidase-like activity for cancer therapy. Colloids and Surfaces B: Biointerfaces, 2017, 154, 239-245.	5.0	79
45	Nanostructured titanium foam with metal ions incorporation for promoting osteogenic differentiation of mesenchymal stem cells. Journal of Alloys and Compounds, 2017, 729, 816-822.	5.5	6
46	One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO ₂ nanostructures for highly efficient photocatalysis. CrystEngComm, 2017, 19, 129-136.	2.6	54
47	Effects of Graphene Quantum Dots on the Selfâ€Renewal and Differentiation of Mesenchymal Stem Cells. Advanced Healthcare Materials, 2016, 5, 702-710.	7.6	103
48	Rutile Nanorod/Anatase Nanowire Junction Array as Both Sensor and Power Supplier for Highâ€Performance, Selfâ€Powered, Wireless UV Photodetector. Small, 2016, 12, 2759-2767.	10.0	66
49	Construction of titanium dioxide nanorod/graphite microfiber hybrid electrodes for a high performance electrochemical glucose biosensor. Nanoscale, 2016, 8, 9382-9389.	5.6	39
50	Engineering the Absorption and Field Enhancement Properties of Au–TiO ₂ Nanohybrids <i>via</i> Whispering Gallery Mode Resonances for Photocatalytic Water Splitting. ACS Nano, 2016, 10, 4496-4503.	14.6	230
51	Self-Powered Electrical Stimulation for Enhancing Neural Differentiation of Mesenchymal Stem Cells on Graphene–Poly(3,4-ethylenedioxythiophene) Hybrid Microfibers. ACS Nano, 2016, 10, 5086-5095.	14.6	249
52	Microenvironment-Driven Bioelimination of Magnetoplasmonic Nanoassemblies and Their Multimodal Imaging-Guided Tumor Photothermal Therapy. ACS Nano, 2016, 10, 7094-7105.	14.6	97
53	Construction of a 3D rGO–collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8, 1897-1904.	5.6	127
54	Scaly Graphene Oxide/Graphite Fiber Hybrid Electrodes for DNA Biosensors. Advanced Materials Interfaces, 2015, 2, 1500072.	3.7	8

Xin Yu

#	Article	IF	CITATIONS
55	NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting. Nano Energy, 2015, 16, 207-217.	16.0	136
56	Hierarchical hybrid nanostructures of Sn ₃ O ₄ on N doped TiO ₂ nanotubes with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2015, 3, 19129-19136.	10.3	70
57	Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy. Nano Energy, 2015, 11, 19-27.	16.0	107